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A B S T R A C T

Phytoplankton plays a crucial role in material cycling and energy flow within marine ecosystems. Ocean color 
remote-sensing chlorophyll-a (Chl-a) data serves as the primary means for assessing phytoplankton in the ocean 
environment. Nevertheless, the determination of nocturnal Chl-a still relies heavily on in situ ocean surveys. Diel 
variations in Chl-a, particularly nocturnal Chl-a, can more accurately reflect the ecological processes of marine 
ecosystems. We aimed to probe the nocturnal Chl-a distribution in the Northwestern Pacific Ocean by examining 
the predator–prey dynamics (reflected by acoustic data) and phytoplankton (reflected by Chl-a data). Drawing on 
continuous acoustic data and observed data variation, we reprocessed the 200 kHz frequency band data. 
Furthermore, we derived the nocturnal Chl-a in the Northwest Pacific Ocean based on diel 200 kHz frequency 
band data and Phytoplankton Size Class (PSC) algorithm. The inversion model can effectively retrieve nocturnal 
Chl-a data, and the validation results demonstrate superior performance compared to remote sensing Chl-a data. 
Moreover, we discovered a robust correlation between the diurnal and nocturnal Chl-a data (R2 = 0.9988, bias =
0.9925, MAE = 1.0196), indicating the feasibility of directly deriving nocturnal Chl-a data from diurnal Chl-a. 
This study innovatively integrates the characteristics of acoustic data for day-night monitoring and satellite 
remote sensing for large-scale monitoring, enabling large-scale observations of nocturnal Chl-a. The results 
deepen our understanding of diel ecological changes in the Northwest Pacific Ocean, provide a foundation for 
studying marine productivity variations and carbon cycling processes in the area, and contribute to the 
improvement of the monitoring and management of fishery activities in the region.

1. Introduction

Phytoplankton underpin marine ecosystem productivity through 
biogeochemical cycling, and their community composition and quantity 
directly mediate carbon export efficiency and trophic energy transfer. As 
primary producers in the ocean, phytoplankton absorb carbon dioxide 
through photosynthesis, produce organic matter, and release oxygen, 
forming the foundation of the marine food chain (Falkowski et al., 2004; 
Field et al., 1998; Hilligsøe et al., 2011). The organic matter produced is 
transferred to zooplankton and subsequently to fish and other marine 
organisms, facilitating energy exchange within marine ecosystems 
(Ariza et al., 2015; Everett et al., 2017).

The Northwest Pacific Ocean is one of the world’s most productive 
regions. According to the Food and Agriculture Organization (FAO) of 
the United Nations, fishery production in the Northwest Pacific reaches 
20 million tons, accounting for 25 % of global marine fish production 
(FAO, 2019). Ocean currents and mesoscale eddies form fronts in this 
area, particularly in the Kuroshio Extension, providing nutrient-rich 
water (Wang et al., 2021; Zhou et al., 2021). Monitoring and 
analyzing plankton, especially phytoplankton, improves understanding 
of marine environmental changes driven by climate change and supports 
marine ecosystems and fishery resource protection (Friedland et al., 
2012; Hays et al., 2005; Yatsu et al., 2013).

Remote sensing of chlorophyll-a (Chl-a) data has been extensively 

* Corresponding authors at: Deep Sea and Polar Fisheries Research Centre, Ocean University of China, Qingdao, China.
E-mail addresses: yangliu315@ouc.edu.cn (Y. Liu), lijianchao@ouc.edu.cn (J. Li). 

Contents lists available at ScienceDirect

Ecological Informatics

journal homepage: www.elsevier.com/locate/ecolinf

https://doi.org/10.1016/j.ecoinf.2025.103246
Received 23 September 2024; Received in revised form 28 May 2025; Accepted 28 May 2025  

Ecological Informatics 90 (2025) 103246 

Available online 31 May 2025 
1574-9541/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:yangliu315@ouc.edu.cn
mailto:lijianchao@ouc.edu.cn
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2025.103246
https://doi.org/10.1016/j.ecoinf.2025.103246
http://creativecommons.org/licenses/by/4.0/


utilised to study phytoplankton and fisheries in the Northwest Pacific 
region (Chai et al., 2021; Fan et al., 2009; Tian et al., 2022). Acoustic 
methods can also be applied in plankton investigations. Although 
directly detecting phytoplankton remains challenging, larger 
zooplankton can be detected and combined with sampling to study 
plankton biodiversity and distribution characteristics (Chiba et al., 
2013; Zang et al., 2023). Both phytoplankton and zooplankton exhibit 
distinct diel differences (Garcia-Herrera et al., 2022; Guan et al., 2023). 
However, only a few studies have integrated multiple data sources to 
examine these differences, especially nocturnally. Additionally, 
numerous fishery activities in the Northwest Pacific Ocean occur at 
night due to the diel vertical migration (DVM) of prey species. Thus, 
relying solely on marine surveys or remote sensing data collected during 
the daytime may provide a limited or biased perspective, particularly 
when predicting fishing ground distribution. Collecting data at night 
and integrating multiple data sources could substantially enhance 
research in this field.

With the development of remote sensing technology, phytoplankton 
observations can be indirectly obtained using Chl-a data from ocean 
color remote sensing (Boyce et al., 2010; Dutkiewicz et al., 2019). The 
Phytoplankton Size Class (PSC) Algorithm (Brewin et al., 2010; Huan 
et al., 2022) classifies phytoplankton into picophytoplankton (<2 μm, 
Pico), nanophytoplankton (2–20 μm, Nano), and microphytoplankton 
(>20 μm, Micro) using diagnostic pigment analysis (DPA) of in-situ 
pigment data measured by high-performance liquid chromatography 
(HPLC) (Uitz et al., 2006). This algorithm has been widely applied in 
studies on the strong relationship between size and phytoplankton 
function (Brewin et al., 2011; Turner et al., 2021; Xi et al., 2020). 
Because ocean color remote sensing relies on sunlight, observations are 
limited to daytime. However, continuous station monitoring studies 
have revealed significant diel variations in Chl-a concentration, com
munity composition, and Chl-a fluorescence (Doblin et al., 2011; Guan 
et al., 2023; Neveux et al., 2003; Pan et al., 2019). Despite known 
diurnal differences in Chl-a characteristics, comprehensive large-scale 
observations of nocturnal Chl-a remain lacking.

Acoustic methods are valuable for underwater biological detection, 
fishery resource assessment, and management (Carlsen et al., 2024; 
Sánchez-Gendriz and Padovese, 2017; Zhu et al., 2024). They offer high 
spatiotemporal resolution, large measurement ranges, and minimal 
environmental disturbance (Béhagle et al., 2016; Xue et al., 2021). 
Relevant acoustic equipment includes the Acoustic Doppler Current 
Profiler (ADCP) and echosounders. Among these, multi-frequency 
echosounders have greater particle-detection capability, enabling 
simultaneous detection at close range, whereas low-frequency beams 
detect large organisms at greater distances (Holliday, 1995). Because the 
acoustic equipment relies on sound waves, it is unaffected by day-night 
cycles. Consequently, acoustic devices are commonly used for contin
uous station and transect observations, and can be combined with 
remote sensing data to investigate subsurface and diel variations in the 
ocean, such as zooplankton vertical migration or marine environmental 
profiling (Behrenfeld et al., 2019; Schwartz-Belkin and Portman, 2023). 
While acoustic devices can be integrated with other data for ecological 
investigations (Agarwal et al., 2016; Fujioka et al., 2014; Kande et al., 
2024), few studies have explored their integration with remote sensing 
and algorithms for enhanced data analysis (Behrenfeld et al., 2019).

Although acoustic data cannot directly detect phytoplankton, they 
effectively monitor plankton (Béhagle et al., 2016; Holliday, 1995; 
Lavery et al., 2007). The association between plankton DVM and 
phytoplankton provides a basis for linking phytoplankton to acoustic 
data (Fernández-Álamo and Färber-Lorda, 2006). Specifically, acoustic 
data is capable of capturing signals from zooplankton that undergo DVM 
to surface layers for feeding activities (Behrenfeld et al., 2019). These 
zooplankton-mediated vertical movements subsequently induce quan
titative changes in phytoplankton populations through trophic in
teractions (Fogg, 1991; Zhou et al., 2015). Consequently, the observed 
diel variations in acoustic signals exhibit a strong correlation with 

phytoplankton dynamics, establishing an indirect but functionally sig
nificant linkage between acoustic signatures and phytoplankton abun
dance. We used Chl-a as a proxy for phytoplankton. By leveraging the 
complementary strengths of remote sensing and multi-frequency 
acoustic data, we first mapped nocturnal Chl-a distribution. Specif
ically, we established relationships between nocturnal Chl-a data and 
acoustic data, as well as between diurnal remote sensing Chl-a data and 
acoustic data. This enables the estimation of nocturnal Chl-a using 
daytime remote-sensing Chl-a data. The PSC algorithm bridges acoustic 
detection of planktonic particles and Chl-a data, ultimately allowing 
nocturnal Chl-a estimation in the Northwest Pacific Ocean from diurnal 
ocean color data.

2. Materials and methods

2.1. Study area and data collection

The study area is situated in the Northwest Pacific Ocean, extending 
from 140◦E to 170◦E and 30◦N to 50◦N. Fig. 1 depicts the range covering 
all sampling stations.

2.1.1. In situ data collection and remote sensing data
Fishery echosounder acoustic data and surface Chl-a (Chl-asur) data 

at a depth of 3.5 m were collected during a research cruise in November 
2019 aboard the research vessel “Dongfanghong 3”. Data were collected 
continuously along the longitudinal section at 150◦E. Chl-asur data was 
collected by Turner Designs Cyclops-7 fluorescence sensor. Further
more, in-situ Chl-a (Chl-ain situ) was sampled at a depth of 5 m.

Echosounder data were acquired using a Simrad EK80 echosounder 
system with five transducers operating at 18, 38, 120, 200, and 333 kHz 
frequencies. The system was calibrated using the standard sphere 
method (Foote et al., 1987), transmitting pulses in sequence for 1.024 
ms in FM mode. Chl-asur data were obtained using a surface water 
sampling system. Remote-sensing Chl-a data (Chl-amodis) were sourced 
from the NASA Ocean Color Website (MODIS-Aqua) with a monthly 
temporal and spatial resolution of 4 km. Chl-amodis data primarily 
represent daytime conditions, while nocturnal Chl-a data are sourced 
from Chl-asur collected during the cruise.

2.2. Data processing

2.2.1. Chl-a data processing
Given the study’s objective of retrieving nocturnal Chl-a concentra

tions through satellite-derived Chl-a data, where satellite data serve as 
the foundational dataset, our analytical framework necessitates main
taining consistency in concentration scales between Chl-asur and Chl- 
amodis. To address inherent disparities in measurement protocols, we 
implemented a linear regression-based normalization of Chl-asur data 
against match-up Chl-amodis. Chl-asur data were then separated into 
daytime and nighttime datasets. Chl-amodis data were extracted based on 
the sampling locations of the acoustic data.

Phytoplankton size components were determined using the PSC al
gorithm, which classifies phytoplankton into picophytoplankton (0.2–2 
μm, C1), nanophytoplankton (2–20 μm, C2), and microphytoplankton 
(>20 μm, C3). The algorithm separates Chl-a into C3 and C1,2, where C1,2 
is the sum of C1 and C2. C1,2 was further divided into C1 and C2 using the 
following equations: 

C1,2 = Cm
1,2 •

[
1 − exp

(
− S1,2 • C

) ]
, (1) 

C1 = Cm
1 • [1 − exp( − S1 • C) ], (2) 

C2 = C1,2 − C1, (3) 

C3 = C − C1,2 (4) 
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where Cm
1,2 and Cm

1 determine the upper limit values of C1,2 and C1. S1,2 

and S1 determine the increase in the two phytoplankton size compo
nents with Chl-a concentration (Table 1).

2.2.2. The correction and reprocessing of fishery echosounder acoustic data
The 200 kHz and 333 kHz echosounder data were processed using 

Echoview software to eliminate background noise, invalid pings, and 
spike noise. The data were then integrated over 2 m depth bins and 10- 
min intervals to calculate backscattering values (Sv, dB re m− 1), which 
were then averaged over time. To ensure consistent diurnal and 
nocturnal categorization while minimizing the influence of latitude on 
photoperiod length, we defined fixed time intervals. Specifically, day
time was set from 08:00 to 16:00 local time, and nighttime spanned from 
20:00 to 04:00. This approach effectively circumvents the issue of var
iable day and night lengths that typically occur with changes in latitude. 
To minimize vessel noise interference, the top 20 m of the water column 
was excluded, and data were averaged over the 20–30 m depth range to 
capture plankton diel vertical migration signals in the study area. This 

approach aligns with previous studies, which have shown that this layer 
of the water column predominantly contains plankton patches infor
mation (Swartzman et al., 1999; Tokarev et al., 1998).

High-frequency fishery echosounder bands can be used to detect 
smaller particles in the water column. Additionally, the different fre
quency bands of the fishery echosounder exhibit disparities in the Sv 
data received from the same objects detected in the water. The Sv data of 
the particles detected from the lower-frequency band tend to be stronger 
than those from the higher-frequency band. Therefore, variations in Sv 
data differed across frequency bands. In this study, nocturnal Sv data 
were used to reprocess diurnal 200 kHz data. The data were divided 
using 26◦N as the boundary. South of 26◦N, daytime 333 kHz Sv pre
dominantly reflects smaller, non-migratory particles, enabling clearer 
isolation of nocturnal migrant backscatter. However north of 26◦N, 
larger-bodied zooplankton persisting in surface waters during daytime 
disproportionately contribute to Sv signals at elevated latitudes, mask
ing the DVM-specific backscattering values. Therefore, we implement 
detection characteristics of different acoustic frequency bands to elim
inate zooplankton latitudinal size-spectra effects. The reprocessing al
gorithms are as follow: 
(
Sv333ʹ

d + I
)
−
(
Sv200ʹ

d + δI
)
= ΔSv333d− Sv200d (5) 

Sv200d re = Sv200’
d + I (6) 

Fig. 1. The sampling station and survey route in the Northwest Pacific Ocean.

Table 1 
The coefficients of PSC algorithms.

Coefficients Cm
1,2/Cm

1 S1,2/S1

Nano- and picophytoplankton 1.057 0.851
Picophytoplankton 0.107 6.801
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where Sv333ʹ
d and Sv200ʹ

d represent the average daytime data at 333 
kHz and 200 kHz south of 26◦N. The variable I is the influence coeffi
cient, representing the impact of plankton particles detected by the 333 
kHz frequency band. The constant δ, valued at 3.042, is derived from the 
average ratio of diurnal to nocturnal Sv data for the two frequency bands 
south of 26◦N. Nocturnal data from this region serve as a reference for 
the influence of larger plankton particles on Sv data. ΔSv333d− Sv200d de
notes the difference in diurnal Sv data for the two frequency bands north 
of 26◦N before correction, while Sv200d re represents the corrected 
diurnal Sv data at 200 kHz north of 26◦N.

2.2.3. Nocturnal Chl-a algorithm construction
In this study, a hyperbolic model was adopted to establish the rela

tionship between the different components of Chl-a and Sv data. The 
independent variables were Chl-a concentration and its components. 
The algorithm is as follows: 

ΔSv =
a • C

(b + C)
(7) 

where ΔSv denotes the difference in Sv data,C denotes Chl-a or different 
phytoplankton size components, and a and b are the algorithm co
efficients. This model depicts the trend of the Sv data as the Chl-a con
centration or the concentration of different phytoplankton size 
components changes.

During the collection of Sv data along 150◦E longitude, simultaneous 
day-night Sv data were available at a single location. Therefore, we 
averaged the 200 kHz Sv data over a day-night period. We selected the 
midpoint of the latitude range traversed within that day-night period as 
the corresponding latitude and longitude position for that period’s Sv 
data. The data were further used to construct the relationship between 
the Sv data and latitude variation. In the subsequent relationship 
modelling, the corresponding Sv data were obtained based on latitude. 
According to Eq. (7), the difference between the nocturnal 200 kHz Sv 
data and the corrected diurnal 200 kHz Sv data is related to C3 as 
follows: 

ΔSv200n− Sv200d re =
a • C3

(b + C3)
(8) 

Diurnal C3 was calculated by applying the PSC algorithms to Chl- 
amodis, and nocturnal C3 was derived from Chl-asur. Diurnal and 
nocturnal C3 data were connected using ΔSv200n− Sv200d re, and the distri
bution of nocturnal Chl-a was obtained based on the relationship be
tween C3 and Chl-a.

2.2.4. Algorithm assessment and validation
The corresponding nocturnal Chl-a data were extracted for valida

tion based on the position of Chl-ain situ. The slope, intercept, and R2 

values between Chl-ain situ and nocturnal Chl-a data were recorded to 
assess algorithm performance. Additionally, the bias and mean absolute 
error (MAE) were calculated to quantify the systematic bias of the al
gorithm (the closer the bias value was to 1, the lower the deviation; a 
bias of 1 indicated no deviation) (Seegers et al., 2018). These results 
were then compared with those obtained for Chl-amodis. Fig. 2 illustrates 
the research process used in this study. 

Bias = 10

∑n
i=1(log10(chlnighttime)− log10(chlin situ)

n (9) 

Mean absolute error = 10

∑n
i=1|log10(chlnighttime)− log10(chlin situ)|

n (10) 

3. Results

3.1. Diel variation of Chl-a and Sv data

3.1.1. Chl-a data
Chl-asur was differentiated between the day and night, and diurnal 

Chl-asur was compared with Chl-amodis (Fig. 3). As shown in Fig. 3, 
although the results indicate an apparent overestimation of the Chl-asur 
data, the overall relationship followed a linear pattern, as indicated by 
the R2 value. To ensure consistency, the Chl-asur data were corrected 
based on regression results so that the measurement results of Chl-asur 
and Chl-amodis were on the same observational scale.

The diel variation of the corrected Chl-asur is shown in Fig. 4, where 
red dots represent diurnal Chl-asur data, blue dots represent nocturnal 
Chl-asur data, and gray dots represent Chl-asur data outside the selected 
daytime and nighttime periods, consistent with the Sv data. Chl-asur 

Fig. 2. The flowchart of nocturnal Chl-a acquisition.
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exhibited significant diel fluctuations: during the day, the Chl-asur con
centration initially decreased before increasing, while at night, it first 
increased and then decreased. Furthermore, the overall Chl-asur con
centration during the nighttime was higher than during the daytime, 
with a mean diel difference of 0.12 mg m− 3 in the study area. The cor
rected Chl-asur values were subsequently divided into phytoplankton 
concentrations using the PSC algorithm.

To further validate these results, we selected data from a continuous 
monitoring station outside the study area (20.1◦N, 153.7◦E) for analysis. 
The diel variation trend of Chl-a data from the CTD measurements 
(collected by Sea-bird WET Labs ECO-FLNTUrtd fluorescence sensor in 
the depth of 3.5 m) closely aligned with that of Chl-asur in the study area 
(Fig. 5).

3.1.2. Sv data
To better distinguish the differences between daytime and nighttime 

data and illustrate diel variations, we designated local time 8:00–16:00 
as diurnal data and 20:00–4:00 (following day) as nocturnal data. Fig. 6
illustrates the data variations during the survey along 10◦N to 40◦N and 
150◦E. In the upper part of Fig. 6, the red dots represent diurnal 200 kHz 
Sv data, blue dots represent nocturnal Sv data, and gray dots represent 
Sv data outside the selected daytime and nighttime periods. The results 

indicate that during continuous diel changes, the intensity of Sv data 
was lower during the day than at night.

The lower part of Fig. 6 shows the trend of Chl-asur with increasing 
latitude. At lower latitudes, primarily influenced by the Kuroshio Cur
rent, Chl-a concentration remained low with daytime concentrations 
lower than nighttime concentrations. North of 35◦N, the region gradu
ally came under the influence of the Oyashio Current, leading to an 
increase in Chl-a concentration (as shown in Fig. 4). Notably, the diel 
variations in 200 kHz Sv data and Chl-a concentration exhibit distinct 
trends with latitude. While Sv data showed a gradual increase with 
latitude, Chl-a concentration exhibited a obvious rise under the Oyashio 
Current’s influence.

Further analysis of 333 kHz and 200 kHz Sv data revealed that at 
lower latitudes, there existed a difference in Sv intensity between the 
two frequency bands, with 333 kHz Sv values notably higher than those 
at 200 kHz. However, as latitude gradually increased, the difference 
between Sv intensities at the two frequencies diminished (Fig. 7). This 
phenomenon can be attributed to the detection characteristics of the 
echosounder. In low-latitude regions, smaller suspended particles 
dominate the water column, which are detected more effectively by the 
higher-frequency 333 kHz band. As latitude increases, particle size also 
increases, allowing the 200 kHz band to detect larger suspended parti
cles more efficiently. Moreover, due to the differing Sv characteristics of 

Fig. 3. The fitting result between the initial Chl-asur and Chl-amodis. The two 
dashed lines represent the 95 % confidence interval, and the solid line indicates 
the regression line.

Fig. 4. The diel variation of the corrected Chl-asur. Red dots represent diurnal Chl-asur data, blue dots represent nocturnal Chl-asur data, and gray dots represent Chl- 
asur data outside the selected daytime and nighttime periods. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 5. The diel variation of the corrected Chl-asur in a continuous station. Red 
dots represent diurnal Chl-asur data, blue dots represent nocturnal Chl-asur 
data, gray dots represent Chl-asur data outside the selected daytime and 
nighttime periods, and black dots represent Chl-a collected using CTD. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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the echosounder at different frequency bands, the Sv intensity at 200 
kHz was higher than at 333 kHz, causing the Sv data from both fre
quencies to gradually converge as latitude increased. Therefore, we 
reprocessed the diurnal 200 kHz Sv data and further examined the dif
ferences between the two frequency bands.

During the reprocess of acoustic data, 26◦N was chosen as the 
boundary, marking the approximate location of the biogeographic 
province at 150◦E (Zang et al., 2023). Sv data were not processed south 
of 26◦N, as they were primarily influenced by smaller suspended par
ticles that affect 333 kHz Sv data but are not effectively detected by the 
200 kHz frequency band. Plankton abundance and size gradually 
increased north of 26◦N. Fig. 8 illustrates the difference in Sv data be
tween the two frequency bands during the daytime and nighttime, ob
tained by averaging Sv data over both periods and selecting the 
midpoint latitude of the travelled distance.

As shown in Fig. 8, south of 26◦N, the difference in Sv data remained 
relatively stable. During nighttime, the average enhancement of the 200 
kHz Sv data relative to the 333 kHz Sv data was 3.042 (δ, Eq. (5)) 
compared to daytime. In this study, we used the nighttime enhancement 

of 200 kHz Sv data south of 26◦N —caused by the upward movement of 
zooplankton—as a reference to reprocess the diurnal 200 kHz data north 
of 26◦N. This process mitigates the influence of larger suspended par
ticles on the diurnal 200 kHz Sv data in the northern region.

Fig. 9 illustrates the difference in Sv data between the 333 kHz and 
200 kHz frequency bands before and after correction. The gray dots 
represent the original differences, while the red dots indicate the cor
rected data. After correction, the increased difference between the two 
frequency bands reflects a higher abundance of smaller suspended 
particles with increasing latitude.

To further investigate diel variation, we analysed the relationship 
between 200 kHz Sv data (including both nocturnal and corrected 
diurnal data) and latitude (Fig. 10). After filtering out outliers influ
enced by eddies and other external factors, we established a relatively 
stable relationship between diel variation in 200 kHz Sv data and lati
tude. This relationship allows for the estimation of diel differences in 
200 kHz Sv data at corresponding latitudes. Notably, the magnitude of 
diel differences increases with latitude.

Fig. 6. The diel variation of 200 kHz Sv data and Chl-asur data during the survey. Red dots represent diurnal data, blue dots represent nocturnal data, and gray dots 
represent data outside the selected daytime and nighttime periods. The upper part illustrates the variation of 200 kHz Sv data, while the lower part displays Chl-asur 
data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The variation of 200 kHz and 333 kHz Sv data with latitude.
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3.2. Relationship between Chl-a data and Sv data

Fishery echosounder cannot directly detect small particles such as 
phytoplankton. In this study, we applied the processing method 
described in Section 2.2.2 to reprocess the diurnal 200 kHz Sv data, 
eliminating the influence of large plankton during daytime. Therefore, 
the diel difference in 200 kHz Sv data primarily reflects the information 
of zooplankton that ascend to surface water layer through DVM during 
nighttime. To classify Chl-a data into different phytoplankton size 
classes, we employed the PSC algorithm. This study established a rela
tionship between the Sv data associated with larger particles—reflected 
by the diel difference in 200 kHz Sv data—and the C3 phytoplankton 
component derived from the PSC algorithm.

The relationship between diurnal C3, calculated from Chl-amodis, and 

the diel difference in 200 kHz data is illustrated in Fig. 11(a). This 
relationship follows a hyperbolic model, with an R2 value of 0.9182. The 
two dashed lines in Fig. 11(a) represent the 95 % confidence intervals. 
Based on this model, the diel difference in 200 kHz data can be inferred 
from remote sensing Chl-a data, primarily reflecting the distribution of 
larger particles during nighttime.

Similarly, we established a relationship between the nocturnal C3 
component, obtained from nocturnal Chl-asur data via the PSC algo
rithm, and the diel difference in 200 kHz data using the hyperbolic 
model (Fig. 11(b)), yielding an R2 of 0.9156. The dashed lines indicate 
the 95 % confidence intervals. By linking C3 obtained values derived 
from Chl-amodis and Chl-asur data with the diel difference in 200 kHz Sv 
data, we created a method to connect diurnal and nocturnal Chl-a data, 
allowing the retrieval of nocturnal Chl-a from information from remote 
sensing Chl-a data.

Because the C3 component cannot be directly obtained using the PSC 
algorithm, we identified a quadratic function that effectively models the 
relationship between Chl-a and C3 (Fig. 12). This relationship, based on 
nocturnal Chl-asur and C3 data, exhibited a strong correlation, with an R2 

value of 0.9998. The coefficients for the hyperbolic models are pre
sented in Table 2 and can be used to derive nocturnal Chl-a data from 
Chl-amodis (Fig. 13).

3.3. Accuracy validation of nocturnal Chl-a

Nocturnal Chl-a data were validated against Chl-ain situ, and valida
tion was performed between Chl-amodis and Chl-ain situ for comparison. 
The results are shown in Fig. 14. The R2 for the validation of nocturnal 
Chl-a against Chl-ain situ was 0.6714, with a slope of 1.100 and an 
intercept of 0.0439. The validation results for Chl-amodis showed an R2 

value of 0.6625 with a slope of 1.135 and an intercept of 0.0141. The 
systematic biases are presented in Table 3. The overall systematic bias 
for the nocturnal Chl-a data may be better than that for Chl-amodis.

Additionally, we discovered a strong correlation between diurnal 
and nocturnal Chl-a, with an R2 of 0.9988, a bias of 0.9925, and an MAE 
of 1.0196, enabling the estimation of nocturnal Chl-a distribution based 
on diurnal Chl-a (Fig. 15). Although this result requires more in situ data 
for validation, it provides a concise way to obtain nocturnal Chl-a data.

4. Discussion

4.1. The latitudinal trend fishery echosounder Sv data in Northwest 
Pacific Ocean

Previous studies have shown that the Sv of Fluid-like (FL) class, 

Fig. 8. The variation of the differences between two frequency bands Sv data with latitude during daytime and nighttime.

Fig. 9. Variation in the differences between diurnal Sv data at 333 kHz and 
200 kHz before and after correction across latitude.

Fig. 10. The relationship between 200 kHz Sv data (nocturnal data and diurnal 
data after correction) and latitude.
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which includes copepods, euphausiids, and chaetognaths, typically in
creases from low- to high-frequency acoustic backscatter from 18 to 200 
kHz frequency band, and plankton show a rapid rise in the scattering 
levels within the lower frequency range and a tendency toward levelling 
off at higher frequencies (Nie et al., 2023; Stanton, 2000; Ventero et al., 
2020). These results are consistent with our findings. South of 26◦N, the 
suspended particles mainly consisted of smaller organisms that could be 
detected at a higher frequency (333 kHz), and the 333 kHz band shows 
considerably higher values than the 200 kHz, which is consistent with 
the biogeographic provinces around 150◦E (Zang et al., 2023). North of 
26◦N, the Sv data for the two frequency bands gradually increased and 
converged. This can be attributed to two main factors. First, as latitude 
increases, the abundance and size of planktonic organisms increase with 
changes in the marine environment (Zang et al., 2023). Consequently, 
the Sv data for both the frequency bands gradually increase. Second, 
owing to the larger size of the suspended particles, the 200 kHz fre
quency band detected higher Sv intensities from the same particles than 
the 333 kHz frequency band. Hence, although the 333 kHz frequency 
band can detect a greater number of suspended particles, the trend and 
intensity difference of the Sv data between the two frequency bands 
gradually converge (Stanton, 2000). This further demonstrates that 
there is a certain variation pattern of Sv data with latitude, a connection 
driven by latitudinal gradients in environmental controls (like 

temperature, salinity) and nutrient regimes, which collectively alter 
plankton community composition (McManus and Woodson, 2012; 
Messié and Chavez, 2017; Zang et al., 2023). Although Xue et al. showed 
no obvious correlation between Sv data and latitude—owing to the 
different collection times of the acoustic data—Sv data are affected by 
the DVM of zooplankton, and the latitude span is relatively small (Xue 
et al., 2021). Therefore, we averaged the data over the daytime periods. 
This approach can not only distinguish the day–night Sv data conditions 
but also explore the relationship between Sv data and latitude.

Based on the above analysis, because of the characteristics of the 333 
kHz frequency band, it cannot fully reflect the situation of suspended 
particles at night. If we directly use the results of the day–night differ
ence of 200 kHz data, it may lead to the omission of suspended particles 
that exist in the surface layer both during the day and at night north of 
26◦N. Therefore, in our study, we selected the daytime data of 200 kHz 
north of 26◦N, and based on the enhancement in Sv data caused by the 
DVM south of 26◦N, we reprocessed the enhancement of the diurnal 200 
kHz frequency band caused by the increase in latitude. However, the 
changes caused by DVM and the variation in planktonic organisms with 
latitude are not entirely consistent, with differences in the intensity and 
species composition of plankton (Behrenfeld et al., 2019; Zang et al., 
2023). Seasonal variations in planktonic organisms may also contribute 
to the uncertainties in the reprocessing process (Garcia-Herrera et al., 
2022; Wei et al., 2023; Zhou et al., 2015). Given the limitations of the Sv 
data and the calibration process, we delimited the study range from 
30◦N to 50◦N, and the relevant results of the Sv data reprocess may not 
be applicable to other marine regions. Further seasonal studies and 
validation are required. Simultaneously, different processing methods 
can be applied to the Sv data to leverage the multi-frequency and 
day–night detection advantages of the fishery echosounder, enabling 
further analysis of the correlation between the Sv data and latitude or 
the marine environment.

4.2. Potential relationships in model construction

This study investigated the relationship between suspended particles 
and Chl-a in the water column by establishing a connection between the 
diel variation of surface 200 kHz Sv data and different sizes of Chl-a 
components. Although the 200 kHz frequency band of the fishery 
echosounder does not directly detect phytoplankton, the Sv data con
taining zooplankton information exhibits a stable correlation (repre
sented by hyperbolic model) with the large phytoplankton represented 
by the C3 component calculated using the PSC algorithm. The PSC al
gorithm has been widely used and validated in previous studies for its 
capacity to characterize biomass relationships between plankton groups 
(Brewin et al., 2010; Huan et al., 2022). Therefore, we selected the 
hyperbolic model based on its alignment with the general trends of the 
PSC algorithm model and its superior statistical fitting performance. 

Fig. 11. a) Relationship between diurnal C3 (Chl-amodis) and diel difference in 200 kHz Sv data, modelled using a hyperbolic function. b) Relationship between 
nocturnal C3 (Chl-asur) and diel difference in 200 kHz Sv data, also modelled using a hyperbolic function. The dashed lines represent the 95 % confidence interval, 
while the solid line represents the fitted line.

Fig. 12. Quadratic function describing the relationship between nocturnal Chl- 
asur and C3.

Table 2 
Coefficients of the hyperbolic models describing the relationship between C3 and 
the diel difference in 200 kHz Sv data.

Coefficients a b

Chl-amodis C3 (daytime) 12.88 0.007250
Chl-asur C3 (nighttime) 12.74 0.006871
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This relationship may be associated with predator–prey dynamics 
within the plankton (Zhou et al., 2015). Studies have shown that the 
ratio of predator size to (ingested) prey size for distinct plankton grazer 
groups ranges, on average, over 1 to 2 orders of magnitude (Fernández- 
Álamo and Färber-Lorda, 2006; Wirtz, 2012; Zhou et al., 2015). This 
pattern may also encompass ecological flow within the plankton com
munity and biological carbon pumps (Iversen, 2023; Legendre, 1999). 

The nocturnal distribution of Chl-a can be derived from the diel differ
ence in the 200 kHz acoustic data, which captures the nighttime patterns 
of larger suspended particles. Although the 200 kHz Sv data inherently 
include signals from vertically migrating fish and other plankton- 
feeding organisms (whose grazing activities contribute to phyto
plankton consumption) and despite current limitations in accurately 
discriminating distinct biological signatures or eliminating their 

Fig. 13. Distribution of Chl-a. a) is the distribution of Chl-amodis from MODIS-Aqua. b) is C3 component calculated through PSC from Chl-amodis. c) is the nocturnal 
Chl-a distribution. d) is the nocturnal C3 distribution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 14. a) is the fitting result of nocturnal Chl-a data and Chl-ain situ. b) is the fitting result of Chl-amodis and Chl-ain situ. The dashed lines are the 95 % confidence 
interval, the solid line is the fitting line, and the gray line is 1:1 line.

Table 3 
The metrics of algorithms assessment.

Metrics Slope Intercept R2 Bias MAE

Nocturnal Chl-a and Chl-ain situ 1.100 0.0439 0.6714 0.9796 1.8162
Chl-amodis and Chl-ain situ 1.135 0.0141 0.6625 1.2671 2.0059
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influences within acoustic data, the diel difference of 200 kHz Sv data, 
reflecting the overall organic particle dynamics in the water column, 
remains effective for reconstructing nocturnal Chl-a dynamics. Notably, 
the hyperbolic model may not capture specific phenomena, such as 
plankton anomalies from mesoscale eddies or algal blooms, because 
increased suspended particle concentrations reduce Sv data sensitivity, 
driving the model toward an extreme value (Fig. 10). This leads to model 
deviation when the Chl-a concentration is high, particularly when the C3 
component is dominant in the water. The same problems occur in the 
PSC algorithm, which is also a reason for model deviations (Brewin 
et al., 2010; Huan et al., 2022). Therefore, future research should further 
explore relevant ecological patterns and clarify the relationship between 
acoustic data and nocturnal Chl-a to develop a more accurate model.

In other words, this study establishes a methodological bridge be
tween satellite-derived Chl-a and nocturnal Chl-a concentrations 
through acoustic Sv data analysis. The developed empirical relation
ships enable direct derivation of nocturnal Chl-a estimates from remote 
sensing data within the study area. And the derived nocturnal Chl-a 
products maintain spatiotemporal consistency with satellite observa
tions, overcoming the inherent limitations of discrete field measure
ments, including low spatial coverage and scale mismatch. For broader 
applications, this framework provides a transferable methodology 
requiring region-specific validation through nocturnal Chl-a and coor
dinated acoustic sampling. Additionally, the stable relationship between 
the C3 and 200 kHz frequency band data could extend the acoustic data 
of single-point station or transect surveys into large-scale applications 
by leveraging the characteristics of large-scale remote sensing surveys 
using the hyperbolic model. However, the accuracy of the large-scale 
acoustic data derived from the hyperbolic model still requires further 
verification, including the distribution of planktonic particles in the 
water column and their correlation with acoustic data; hence, we pro
pose its feasibility.

4.3. The improvement of nocturnal Chl-a compared to Chl-amodis

As a polar-orbiting satellite, MODIS-Aqua passes over the study area 
at approximately 13:30 local time. According to the diel variation of Chl- 
a in the Northwest Pacific Ocean, during this time, the concentration 
was relatively low, but gradually increased throughout the day (Pan 
et al., 2019). Therefore, using Chl-amodis to represent the daily Chl-a 
level in the Northwest Pacific region may result in an overall underes
timation of Chl-a concentration. This phenomenon may not be pro
nounced in low-latitude regions with low productivity; however, 
significant deviations may exist in areas with abundant nutrients and 
higher productivity, such as the Kuroshio–Oyashio Mixing Zone (Huang 
et al., 2022).

As shown in Table 3, the R2 and slope show a slight improvement, 
and the systematic bias of the nocturnal Chl-a data is better than that of 

Chl-amodis. This is mainly because nocturnal Chl-a is obtained through 
relationships with Sv data and is not affected by variations in daylight 
intensity, which lead to deviations in Chl-amodis. Another factor 
contributing to the lower systematic bias of the nocturnal Chl-a was the 
manner in which the Sv-based algorithm accounted for the vertical 
distribution of particles in the water column. In contrast, the Chl-amodis 
algorithm cannot accurately capture this vertical variability, particu
larly in complex oceanic environments with vigorous vertical mixing, 
such as upwelling regions (Blondeau-Patissier et al., 2014). This led to 
larger systematic errors in Chl-amodis. Although the model may induce 
deviations (Discussion 4.2), nocturnal Chl-a data can reduce systematic 
biases compared with remote sensing Chl-a. For the satellite Chl-a 
product accuracy goal in the open ocean, an accuracy of approxi
mately 35 % is generally considered acceptable for international mis
sions (McClain, 2009). Therefore, compared to Chl-amodis, the nocturnal 
Chl-a data can better reflect the distribution of phytoplankton in the 
Northwest Pacific Ocean, which can be further used to explore whether 
diel vertical migrations of zooplankton exhibit Chl-a concentration 
preferences (Garcia-Herrera et al., 2022; Ge et al., 2021). Specifically, 
since total Chl-a comprises size-fractionated phytoplankton compo
nents, and vertically migrating zooplankton (large body size) exhibit 
predatory preferences (Fernández-Álamo and Färber-Lorda, 2006; 
Wirtz, 2012; Zhou et al., 2015), regions with elevated nocturnal Chl-a 
concentrations reflect stronger influences from DVM activities. 
Compared to satellite-derived Chl-a (which typically represents surface- 
layer or diurnally averaged concentrations), higher nighttime Chl-a 
levels further reflect the dominance of larger phytoplankton (C3 
component) in water column and more pronounced diel migratory 
tendencies of zooplankton.

4.4. Ecological and fishery management insights from nocturnal Chl-a

Pan et al. and our study demonstrate that Chl-a has a diel variation 
with higher levels at night and lower levels during the day in the 
Northwest Pacific Ocean (Pan et al., 2019). This observed Chl-a diel 
variation not only reflects the adaptive regulation of phytoplankton to 
light–dark cycles but also provides a physiological basis for under
standing their diurnal oscillation mechanisms. Smaller yet numerous 
nocturnal phytoplankton cells with high Chl-a contents are likely to be 
adequately prepared for photosynthesis and population growth during 
the day. Conversely, an increase in phytoplankton abundance during the 
daytime, along with light regulation, leads to a decrease in Chl-a con
tent. These further confirm the results of Li et al., which show phyto
plankton biomass and carbon content are lower at night and higher 
during the day, whereas cell abundance and size are smaller at night and 
larger during the day (Li et al., 2022).The decrease in nocturnal 
phytoplankton abundance and size was largely attributable to the up
ward movement of nocturnal zooplankton and fish during grazing (Ge 
et al., 2021). In contrast, the greater reduction in biomass and the higher 
Chl-a content of phytoplankton during the night highlight the richness of 
nutrients and biota in the corresponding marine region. In other words, 
nocturnal Chl-a data compensate for the lack of data on the diel varia
tion of Chl-a and can effectively reveal the phenomenon of diurnal- 
nocturnal oscillations in planktonic organisms, thus deepening our un
derstanding of marine primary productivity and biological carbon 
cycling processes (Fogg, 1991; Legendre, 1999). By obtaining nocturnal 
Chl-a data, we can further assess the impact of diel vertical migration 
(DVM) on the increase in nocturnal zooplankton abundance in the upper 
ocean layers and their predation effects on the cycling of surface-layer 
materials (Fernández-Álamo and Färber-Lorda, 2006). Additionally, 
integrating nocturnal Chl-a data with other parameters, such as dis
solved oxygen concentrations and nutrient levels, could provide a more 
comprehensive understanding of ocean ecosystem dynamics (Messié 
and Chavez, 2017).

In pelagic fisheries, a significant portion of commercial operations 
rely on nocturnal light-attraction fishing techniques to aggregate target 

Fig. 15. The relationship between nocturnal Chl-a and diurnal Chl-a.
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species for capture. Therefore, some studies have combined acoustic and 
marine environmental remote-sensing data to explore fish habitats and 
stock distributions (Sánchez-Gendriz and Padovese, 2017; Xue et al., 
2025; Zhu et al., 2024). Some studies have also combined ocean 
nighttime light remote sensing data and AIS vessel position data to 
monitor and manage ocean-going fishing vessels and further analysed 
the location of fishing grounds by integrating relevant environmental 
data (Tian et al., 2022). However, current marine environmental remote 
sensing data used in research are obtained mainly during the day. In 
contrast, nocturnal Chl-a data better reflect the distribution of nocturnal 
plankton. Nocturnal Chl-a data can better reflect the distribution of fish 
stocks and fishing operations for mid-surface economically important 
fish species that use plankton as forage organisms. Additionally, un
derstanding the relationship between nocturnal Chl-a and fish migratory 
patterns can help predict the best time and location for fishing. Thus, 
compared to daytime data, nocturnal Chl-a data can assist managers and 
fishermen in more accurately identifying fishing grounds, enabling more 
precise planning and guidance of fishery activities based on the habits 
and life history characteristics of different economically important fish 
species. Furthermore, nocturnal Chl-a monitoring enables a more ac
curate delineation of fishery resource zones and ecological protection 
areas, providing a data-driven foundation for enhancing marine 
resource conservation and optimizing maritime supervision.

5. Conclusions

We aimed to determine the distribution of nocturnal Chl-a in the 
Northwestern Pacific Ocean by establishing a relationship between 
ocean color remote sensing data and Sv data collected using a multibeam 
fishery echosounder. The results demonstrate that the diel difference in 
200 kHz Sv data can effectively reflect the distribution of larger sus
pended particles at night and correlates strongly with the C3 concen
tration derived from the PSC algorithm. Based on the relationship 
between C3 and Chl-a concentration, we successfully estimated the 
nocturnal Chl-a distribution using diurnal Chl-a data obtained from 
ocean color remote sensing. By analyzing the variations in diel Chl-a 
concentration, we achieved a better assessment of diel changes in 
phytoplankton and primary productivity in the ocean, providing insights 
into the diel migration of planktonic organisms, marine carbon cycles, 
and marine fisheries. However, the results obtained from this study 
apply to the Northwest Pacific Ocean, given the specific data collection 
and reprocessing process of the fishery echosounder Sv data. Further 
exploration is required to investigate the ecological patterns of plankton 
particles reflected in the acoustic data and Chl-a, to improve and vali
date the models. Additionally, efforts should be made to investigate 
seasonal and area differences.

CRediT authorship contribution statement

Chuanyang Huang: Writing – review & editing, Writing – original 
draft, Methodology, Investigation, Data curation, Conceptualization. 
Yang Liu: Writing – review & editing, Formal analysis, Conceptualiza
tion. Jianchao Li: Writing – review & editing, Formal analysis, 
Conceptualization. Hailing Wang: Methodology, Data curation. Yanp
ing Luo: Methodology, Data curation. Honghai Zhang: Data curation. 
Zhaohui Chen: Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledged

This work was supported by National Key Research and 

Development Program of China (2023YFD2401305), and the National 
Natural Science Foundation of China (42225601 and 42176006). The 
survey and data used in this paper was supported by the Laoshan Lab
oratory (grant number LSKJ202201701). The satellite chlorophyll data 
of MODIS-aqua was provided by NASA (National Aeronautics and Space 
Administration).

Data availability

Ocean color remote sensing Chl-a data in this study are available 
from https://oceancolor.gsfc.nasa.gov/, the fishery echosounder 
acoustic data and surface Chl-a data are available on Figshare 
(https://figshare.com/s/57946e9f209ce5689361).

References

Agarwal, S., Rocchini, D., Marathe, A., Nagendra, H., 2016. Exploring the relationship 
between remotely-sensed spectral variables and attributes of tropical Forest 
vegetation under the influence of local Forest institutions. ISPRS Int. J. Geo Inf. 5, 
117. https://doi.org/10.3390/ijgi5070117.

Ariza, A., Garijo, J.C., Landeira, J.M., Bordes, F., Hernández-León, S., 2015. Migrant 
biomass and respiratory carbon flux by zooplankton and micronekton in the 
subtropical Northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134, 
330–342. https://doi.org/10.1016/j.pocean.2015.03.003.
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