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Phytoplankton plays a crucial role in material cycling and energy flow within marine ecosystems. Ocean color
remote-sensing chlorophyll-a (Chl-a) data serves as the primary means for assessing phytoplankton in the ocean
environment. Nevertheless, the determination of nocturnal Chl-a still relies heavily on in situ ocean surveys. Diel
variations in Chl-a, particularly nocturnal Chl-a, can more accurately reflect the ecological processes of marine
ecosystems. We aimed to probe the nocturnal Chl-a distribution in the Northwestern Pacific Ocean by examining
the predator-prey dynamics (reflected by acoustic data) and phytoplankton (reflected by Chl-a data). Drawing on
continuous acoustic data and observed data variation, we reprocessed the 200 kHz frequency band data.
Furthermore, we derived the nocturnal Chl-a in the Northwest Pacific Ocean based on diel 200 kHz frequency
band data and Phytoplankton Size Class (PSC) algorithm. The inversion model can effectively retrieve nocturnal
Chl-a data, and the validation results demonstrate superior performance compared to remote sensing Chl-a data.
Moreover, we discovered a robust correlation between the diurnal and nocturnal Chl-a data (R? = 0.9988, bias =
0.9925, MAE = 1.0196), indicating the feasibility of directly deriving nocturnal Chl-a data from diurnal Chl-a.
This study innovatively integrates the characteristics of acoustic data for day-night monitoring and satellite
remote sensing for large-scale monitoring, enabling large-scale observations of nocturnal Chl-a. The results
deepen our understanding of diel ecological changes in the Northwest Pacific Ocean, provide a foundation for
studying marine productivity variations and carbon cycling processes in the area, and contribute to the
improvement of the monitoring and management of fishery activities in the region.

1. Introduction The Northwest Pacific Ocean is one of the world’s most productive

regions. According to the Food and Agriculture Organization (FAO) of

Phytoplankton underpin marine ecosystem productivity through
biogeochemical cycling, and their community composition and quantity
directly mediate carbon export efficiency and trophic energy transfer. As
primary producers in the ocean, phytoplankton absorb carbon dioxide
through photosynthesis, produce organic matter, and release oxygen,
forming the foundation of the marine food chain (Falkowski et al., 2004;
Field et al., 1998; Hilligsge et al., 2011). The organic matter produced is
transferred to zooplankton and subsequently to fish and other marine
organisms, facilitating energy exchange within marine ecosystems
(Ariza et al., 2015; Everett et al., 2017).

the United Nations, fishery production in the Northwest Pacific reaches
20 million tons, accounting for 25 % of global marine fish production
(FAO, 2019). Ocean currents and mesoscale eddies form fronts in this
area, particularly in the Kuroshio Extension, providing nutrient-rich
water (Wang et al.,, 2021; Zhou et al.,, 2021). Monitoring and
analyzing plankton, especially phytoplankton, improves understanding
of marine environmental changes driven by climate change and supports
marine ecosystems and fishery resource protection (Friedland et al.,
2012; Hays et al., 2005; Yatsu et al., 2013).

Remote sensing of chlorophyll-a (Chl-a) data has been extensively
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utilised to study phytoplankton and fisheries in the Northwest Pacific
region (Chai et al., 2021; Fan et al., 2009; Tian et al., 2022). Acoustic
methods can also be applied in plankton investigations. Although
directly detecting phytoplankton remains challenging, larger
zooplankton can be detected and combined with sampling to study
plankton biodiversity and distribution characteristics (Chiba et al.,
2013; Zang et al., 2023). Both phytoplankton and zooplankton exhibit
distinct diel differences (Garcia-Herrera et al., 2022; Guan et al., 2023).
However, only a few studies have integrated multiple data sources to
examine these differences, especially nocturnally. Additionally,
numerous fishery activities in the Northwest Pacific Ocean occur at
night due to the diel vertical migration (DVM) of prey species. Thus,
relying solely on marine surveys or remote sensing data collected during
the daytime may provide a limited or biased perspective, particularly
when predicting fishing ground distribution. Collecting data at night
and integrating multiple data sources could substantially enhance
research in this field.

With the development of remote sensing technology, phytoplankton
observations can be indirectly obtained using Chl-a data from ocean
color remote sensing (Boyce et al., 2010; Dutkiewicz et al., 2019). The
Phytoplankton Size Class (PSC) Algorithm (Brewin et al., 2010; Huan
et al., 2022) classifies phytoplankton into picophytoplankton (<2 pm,
Pico), nanophytoplankton (2-20 pm, Nano), and microphytoplankton
(>20 pm, Micro) using diagnostic pigment analysis (DPA) of in-situ
pigment data measured by high-performance liquid chromatography
(HPLC) (Uitz et al., 2006). This algorithm has been widely applied in
studies on the strong relationship between size and phytoplankton
function (Brewin et al., 2011; Turner et al., 2021; Xi et al., 2020).
Because ocean color remote sensing relies on sunlight, observations are
limited to daytime. However, continuous station monitoring studies
have revealed significant diel variations in Chl-a concentration, com-
munity composition, and Chl-a fluorescence (Doblin et al., 2011; Guan
et al.,, 2023; Neveux et al., 2003; Pan et al., 2019). Despite known
diurnal differences in Chl-a characteristics, comprehensive large-scale
observations of nocturnal Chl-a remain lacking.

Acoustic methods are valuable for underwater biological detection,
fishery resource assessment, and management (Carlsen et al., 2024;
Sanchez-Gendriz and Padovese, 2017; Zhu et al., 2024). They offer high
spatiotemporal resolution, large measurement ranges, and minimal
environmental disturbance (Béhagle et al., 2016; Xue et al., 2021).
Relevant acoustic equipment includes the Acoustic Doppler Current
Profiler (ADCP) and echosounders. Among these, multi-frequency
echosounders have greater particle-detection capability, enabling
simultaneous detection at close range, whereas low-frequency beams
detect large organisms at greater distances (Holliday, 1995). Because the
acoustic equipment relies on sound waves, it is unaffected by day-night
cycles. Consequently, acoustic devices are commonly used for contin-
uous station and transect observations, and can be combined with
remote sensing data to investigate subsurface and diel variations in the
ocean, such as zooplankton vertical migration or marine environmental
profiling (Behrenfeld et al., 2019; Schwartz-Belkin and Portman, 2023).
While acoustic devices can be integrated with other data for ecological
investigations (Agarwal et al., 2016; Fujioka et al., 2014; Kande et al.,
2024), few studies have explored their integration with remote sensing
and algorithms for enhanced data analysis (Behrenfeld et al., 2019).

Although acoustic data cannot directly detect phytoplankton, they
effectively monitor plankton (Béhagle et al., 2016; Holliday, 1995;
Lavery et al., 2007). The association between plankton DVM and
phytoplankton provides a basis for linking phytoplankton to acoustic
data (Fernandez-Alamo and Firber-Lorda, 2006). Specifically, acoustic
data is capable of capturing signals from zooplankton that undergo DVM
to surface layers for feeding activities (Behrenfeld et al., 2019). These
zooplankton-mediated vertical movements subsequently induce quan-
titative changes in phytoplankton populations through trophic in-
teractions (Fogg, 1991; Zhou et al., 2015). Consequently, the observed
diel variations in acoustic signals exhibit a strong correlation with
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phytoplankton dynamics, establishing an indirect but functionally sig-
nificant linkage between acoustic signatures and phytoplankton abun-
dance. We used Chl-a as a proxy for phytoplankton. By leveraging the
complementary strengths of remote sensing and multi-frequency
acoustic data, we first mapped nocturnal Chl-a distribution. Specif-
ically, we established relationships between nocturnal Chl-a data and
acoustic data, as well as between diurnal remote sensing Chl-a data and
acoustic data. This enables the estimation of nocturnal Chl-a using
daytime remote-sensing Chl-a data. The PSC algorithm bridges acoustic
detection of planktonic particles and Chl-a data, ultimately allowing
nocturnal Chl-a estimation in the Northwest Pacific Ocean from diurnal
ocean color data.

2. Materials and methods
2.1. Study area and data collection

The study area is situated in the Northwest Pacific Ocean, extending
from 140°E to 170°E and 30°N to 50°N. Fig. 1 depicts the range covering
all sampling stations.

2.1.1. Insitu data collection and remote sensing data

Fishery echosounder acoustic data and surface Chl-a (Chl-ag,,) data
at a depth of 3.5 m were collected during a research cruise in November
2019 aboard the research vessel “Dongfanghong 3”. Data were collected
continuously along the longitudinal section at 150°E. Chl-ay,, data was
collected by Turner Designs Cyclops-7 fluorescence sensor. Further-
more, in-situ Chl-a (Chl-aj; sir,) was sampled at a depth of 5 m.

Echosounder data were acquired using a Simrad EK80 echosounder
system with five transducers operating at 18, 38, 120, 200, and 333 kHz
frequencies. The system was calibrated using the standard sphere
method (Foote et al., 1987), transmitting pulses in sequence for 1.024
ms in FM mode. Chl-ag, data were obtained using a surface water
sampling system. Remote-sensing Chl-a data (Chl-ayegis) were sourced
from the NASA Ocean Color Website (MODIS-Aqua) with a monthly
temporal and spatial resolution of 4 km. Chl-ap,gis data primarily
represent daytime conditions, while nocturnal Chl-a data are sourced
from Chl-ag,; collected during the cruise.

2.2. Data processing

2.2.1. Chl-a data processing

Given the study’s objective of retrieving nocturnal Chl-a concentra-
tions through satellite-derived Chl-a data, where satellite data serve as
the foundational dataset, our analytical framework necessitates main-
taining consistency in concentration scales between Chl-ag,, and Chl-
amodis- T0 address inherent disparities in measurement protocols, we
implemented a linear regression-based normalization of Chl-ag,, data
against match-up Chl-apqis- Chl-as,, data were then separated into
daytime and nighttime datasets. Chl-angis data were extracted based on
the sampling locations of the acoustic data.

Phytoplankton size components were determined using the PSC al-
gorithm, which classifies phytoplankton into picophytoplankton (0.2-2
pm, Cp), nanophytoplankton (2-20 pm, Cs), and microphytoplankton
(>20 pm, Cs). The algorithm separates Chl-a into Cz and C; 2, where Cy 5
is the sum of C; and C,. C; 2 was further divided into C; and C; using the
following equations:

Cio=Cl,e[l—exp(—S120C)], [¢))
C1=Cle[l—exp(—5; 0C)], @)
Cy=Ci12—0C, 3)
C3=C—Ci2 (C)]
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Fig. 1. The sampling station and survey route in the Northwest Pacific Ocean.

where C7', and Cf' determine the upper limit values of C; 3 and C;. S1»
and S; determine the increase in the two phytoplankton size compo-
nents with Chl-a concentration (Table 1).

2.2.2. The correction and reprocessing of fishery echosounder acoustic data

The 200 kHz and 333 kHz echosounder data were processed using
Echoview software to eliminate background noise, invalid pings, and
spike noise. The data were then integrated over 2 m depth bins and 10-
min intervals to calculate backscattering values (Sv, dB re m’l), which
were then averaged over time. To ensure consistent diurnal and
nocturnal categorization while minimizing the influence of latitude on
photoperiod length, we defined fixed time intervals. Specifically, day-
time was set from 08:00 to 16:00 local time, and nighttime spanned from
20:00 to 04:00. This approach effectively circumvents the issue of var-
iable day and night lengths that typically occur with changes in latitude.
To minimize vessel noise interference, the top 20 m of the water column
was excluded, and data were averaged over the 20-30 m depth range to
capture plankton diel vertical migration signals in the study area. This

Table 1

The coefficients of PSC algorithms.
Coefficients Cr,/CY S12/51
Nano- and picophytoplankton 1.057 0.851

Picophytoplankton 0.107 6.801

approach aligns with previous studies, which have shown that this layer
of the water column predominantly contains plankton patches infor-
mation (Swartzman et al., 1999; Tokarev et al., 1998).

High-frequency fishery echosounder bands can be used to detect
smaller particles in the water column. Additionally, the different fre-
quency bands of the fishery echosounder exhibit disparities in the Sv
data received from the same objects detected in the water. The Sv data of
the particles detected from the lower-frequency band tend to be stronger
than those from the higher-frequency band. Therefore, variations in Sv
data differed across frequency bands. In this study, nocturnal Sv data
were used to reprocess diurnal 200 kHz data. The data were divided
using 26°N as the boundary. South of 26°N, daytime 333 kHz Sv pre-
dominantly reflects smaller, non-migratory particles, enabling clearer
isolation of nocturnal migrant backscatter. However north of 26°N,
larger-bodied zooplankton persisting in surface waters during daytime
disproportionately contribute to Sv signals at elevated latitudes, mask-
ing the DVM-specific backscattering values. Therefore, we implement
detection characteristics of different acoustic frequency bands to elim-
inate zooplankton latitudinal size-spectra effects. The reprocessing al-
gorithms are as follow:

(Sv333:1 + I) - (SVZOO& + 51) = Asy333d-sv200d )

$v2004_,, = Sv200;, + I 6)
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where Sv333; and Sv200); represent the average daytime data at 333
kHz and 200 kHz south of 26°N. The variable I is the influence coeffi-
cient, representing the impact of plankton particles detected by the 333
kHz frequency band. The constant 5, valued at 3.042, is derived from the
average ratio of diurnal to nocturnal Sv data for the two frequency bands
south of 26°N. Nocturnal data from this region serve as a reference for
the influence of larger plankton particles on Sv data. Asy3334_sy2004 de-
notes the difference in diurnal Sv data for the two frequency bands north
of 26°N before correction, while Sv200,4 , represents the corrected
diurnal Sv data at 200 kHz north of 26°N.

2.2.3. Nocturnal Chl-a algorithm construction

In this study, a hyperbolic model was adopted to establish the rela-
tionship between the different components of Chl-a and Sv data. The
independent variables were Chl-a concentration and its components.
The algorithm is as follows:

aeC

A9 =550

@)

where Ag, denotes the difference in Sv data,C denotes Chl-a or different
phytoplankton size components, and a and b are the algorithm co-
efficients. This model depicts the trend of the Sv data as the Chl-a con-
centration or the concentration of different phytoplankton size
components changes.

During the collection of Sv data along 150°E longitude, simultaneous
day-night Sv data were available at a single location. Therefore, we
averaged the 200 kHz Sv data over a day-night period. We selected the
midpoint of the latitude range traversed within that day-night period as
the corresponding latitude and longitude position for that period’s Sv
data. The data were further used to construct the relationship between
the Sv data and latitude variation. In the subsequent relationship
modelling, the corresponding Sv data were obtained based on latitude.
According to Eq. (7), the difference between the nocturnal 200 kHz Sv
data and the corrected diurnal 200 kHz Sv data is related to Cs as
follows:

a-C3
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Diurnal C3 was calculated by applying the PSC algorithms to Chl-
amodis, and nocturnal C3 was derived from Chl-ag,. Diurnal and
nocturnal C3 data were connected using Asy200n_sy200d_re» and the distri-
bution of nocturnal Chl-a was obtained based on the relationship be-
tween C3 and Chl-a.

2.2.4. Algorithm assessment and validation

The corresponding nocturnal Chl-a data were extracted for valida-
tion based on the position of Chl-aj, sir,. The slope, intercept, and R?
values between Chl-aj, ity and nocturnal Chl-a data were recorded to
assess algorithm performance. Additionally, the bias and mean absolute
error (MAE) were calculated to quantify the systematic bias of the al-
gorithm (the closer the bias value was to 1, the lower the deviation; a
bias of 1 indicated no deviation) (Seegers et al., 2018). These results
were then compared with those obtained for Chl-apog;s. Fig. 2 illustrates
the research process used in this study.

S (10810 (cHluighiine ) 10810 (Chlin sia)

Bias = 10 n ©
ZL | 10810 (chlnighiime ) —10g10 (chlin siea)|

Mean absolute error = 10 n 10)

3. Results

3.1. Diel variation of Chl-a and Sv data

3.1.1. Chl-a data

Chl-ag,r was differentiated between the day and night, and diurnal
Chl-ag,; was compared with Chl-ap,oqis (Fig. 3). As shown in Fig. 3,
although the results indicate an apparent overestimation of the Chl-agy,
data, the overall relationship followed a linear pattern, as indicated by
the R? value. To ensure consistency, the Chl-ag,, data were corrected
based on regression results so that the measurement results of Chl-ag,
and Chl-ap,ogis were on the same observational scale.

The diel variation of the corrected Chl-ag,, is shown in Fig. 4, where
red dots represent diurnal Chl-ag,, data, blue dots represent nocturnal
Chl-ag,; data, and gray dots represent Chl-ag,, data outside the selected

Asy200n-sv200d_re = Brcy ® . . . . . .
(b+Cs) daytime and nighttime periods, consistent with the Sv data. Chl-ag,
Data process Model Establishment \
Change of the model algorithm form
Acoustic data Diel differences :li :
200kHz AS
Correction of Sv data (ASv) o = (4 =7a~c ]
g J_' U= b+ C)
) . @ o % Hyperbola model '—
® ©® =3
Chl-a data ©®q ® s = &
CROMNO) @ ' Asy200n-Sv200d_re = [T
PSC algorithm G, 3
N/
3
Nocturnal Chl-a data product | Nocturnal Chl-a construction
v

Direct way

Diurnal remote
sensing Chl-a data

Need validation

robust correlation

Diurnal Chl-a

Nocturnal Chl-a

7

Diurnal Cg

200kHz ASv

=
4

Nocturnal Cg

Diurnal Chl-a data to nocturnal data

Accuracy validation

Association of diel C, data

Fig. 2. The flowchart of nocturnal Chl-a acquisition.
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the regression line.

exhibited significant diel fluctuations: during the day, the Chl-ag,, con-
centration initially decreased before increasing, while at night, it first
increased and then decreased. Furthermore, the overall Chl-ag,, con-
centration during the nighttime was higher than during the daytime,
with a mean diel difference of 0.12 mg m ™ in the study area. The cor-
rected Chl-ag,, values were subsequently divided into phytoplankton
concentrations using the PSC algorithm.

To further validate these results, we selected data from a continuous
monitoring station outside the study area (20.1°N, 153.7°E) for analysis.
The diel variation trend of Chl-a data from the CTD measurements
(collected by Sea-bird WET Labs ECO-FLNTUTrtd fluorescence sensor in
the depth of 3.5 m) closely aligned with that of Chl-ag, in the study area
(Fig. 5).

3.1.2. Sv data

To better distinguish the differences between daytime and nighttime
data and illustrate diel variations, we designated local time 8:00-16:00
as diurnal data and 20:00-4:00 (following day) as nocturnal data. Fig. 6
illustrates the data variations during the survey along 10°N to 40°N and
150°E. In the upper part of Fig. 6, the red dots represent diurnal 200 kHz
Sv data, blue dots represent nocturnal Sv data, and gray dots represent
Sv data outside the selected daytime and nighttime periods. The results
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indicate that during continuous diel changes, the intensity of Sv data
was lower during the day than at night.

The lower part of Fig. 6 shows the trend of Chl-ag,, with increasing
latitude. At lower latitudes, primarily influenced by the Kuroshio Cur-
rent, Chl-a concentration remained low with daytime concentrations
lower than nighttime concentrations. North of 35°N, the region gradu-
ally came under the influence of the Oyashio Current, leading to an
increase in Chl-a concentration (as shown in Fig. 4). Notably, the diel
variations in 200 kHz Sv data and Chl-a concentration exhibit distinct
trends with latitude. While Sv data showed a gradual increase with
latitude, Chl-a concentration exhibited a obvious rise under the Oyashio
Current’s influence.

Further analysis of 333 kHz and 200 kHz Sv data revealed that at
lower latitudes, there existed a difference in Sv intensity between the
two frequency bands, with 333 kHz Sv values notably higher than those
at 200 kHz. However, as latitude gradually increased, the difference
between Sv intensities at the two frequencies diminished (Fig. 7). This
phenomenon can be attributed to the detection characteristics of the
echosounder. In low-latitude regions, smaller suspended particles
dominate the water column, which are detected more effectively by the
higher-frequency 333 kHz band. As latitude increases, particle size also
increases, allowing the 200 kHz band to detect larger suspended parti-
cles more efficiently. Moreover, due to the differing Sv characteristics of
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Fig. 5. The diel variation of the corrected Chl-ay,, in a continuous station. Red
dots represent diurnal Chl-asur data, blue dots represent nocturnal Chl-asur
data, gray dots represent Chl-asur data outside the selected daytime and
nighttime periods, and black dots represent Chl-a collected using CTD. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the echosounder at different frequency bands, the Sv intensity at 200
kHz was higher than at 333 kHz, causing the Sv data from both fre-
quencies to gradually converge as latitude increased. Therefore, we
reprocessed the diurnal 200 kHz Sv data and further examined the dif-
ferences between the two frequency bands.

During the reprocess of acoustic data, 26°N was chosen as the
boundary, marking the approximate location of the biogeographic
province at 150°E (Zang et al., 2023). Sv data were not processed south
of 26°N, as they were primarily influenced by smaller suspended par-
ticles that affect 333 kHz Sv data but are not effectively detected by the
200 kHz frequency band. Plankton abundance and size gradually
increased north of 26°N. Fig. 8 illustrates the difference in Sv data be-
tween the two frequency bands during the daytime and nighttime, ob-
tained by averaging Sv data over both periods and selecting the
midpoint latitude of the travelled distance.

As shown in Fig. 8, south of 26°N, the difference in Sv data remained
relatively stable. During nighttime, the average enhancement of the 200
kHz Sv data relative to the 333 kHz Sv data was 3.042 (5, Eq. (5))
compared to daytime. In this study, we used the nighttime enhancement

of 200 kHz Sv data south of 26°N —caused by the upward movement of
zooplankton—as a reference to reprocess the diurnal 200 kHz data north
of 26°N. This process mitigates the influence of larger suspended par-
ticles on the diurnal 200 kHz Sv data in the northern region.

Fig. 9 illustrates the difference in Sv data between the 333 kHz and
200 kHz frequency bands before and after correction. The gray dots
represent the original differences, while the red dots indicate the cor-
rected data. After correction, the increased difference between the two
frequency bands reflects a higher abundance of smaller suspended
particles with increasing latitude.

To further investigate diel variation, we analysed the relationship
between 200 kHz Sv data (including both nocturnal and corrected
diurnal data) and latitude (Fig. 10). After filtering out outliers influ-
enced by eddies and other external factors, we established a relatively
stable relationship between diel variation in 200 kHz Sv data and lati-
tude. This relationship allows for the estimation of diel differences in
200 kHz Sv data at corresponding latitudes. Notably, the magnitude of
diel differences increases with latitude.
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data after correction) and latitude.

3.2. Relationship between Chl-a data and Sv data

Fishery echosounder cannot directly detect small particles such as
phytoplankton. In this study, we applied the processing method
described in Section 2.2.2 to reprocess the diurnal 200 kHz Sv data,
eliminating the influence of large plankton during daytime. Therefore,
the diel difference in 200 kHz Sv data primarily reflects the information
of zooplankton that ascend to surface water layer through DVM during
nighttime. To classify Chl-a data into different phytoplankton size
classes, we employed the PSC algorithm. This study established a rela-
tionship between the Sv data associated with larger particles—reflected
by the diel difference in 200 kHz Sv data—and the C3 phytoplankton
component derived from the PSC algorithm.

The relationship between diurnal Cg, calculated from Chl-ap,qgis, and

the diel difference in 200 kHz data is illustrated in Fig. 11(a). This
relationship follows a hyperbolic model, with an R? value of 0.9182. The
two dashed lines in Fig. 11(a) represent the 95 % confidence intervals.
Based on this model, the diel difference in 200 kHz data can be inferred
from remote sensing Chl-a data, primarily reflecting the distribution of
larger particles during nighttime.

Similarly, we established a relationship between the nocturnal Cs
component, obtained from nocturnal Chl-ag,, data via the PSC algo-
rithm, and the diel difference in 200 kHz data using the hyperbolic
model (Fig. 11(b)), yielding an R? of 0.9156. The dashed lines indicate
the 95 % confidence intervals. By linking C3 obtained values derived
from Chl-apogis and Chl-ag,, data with the diel difference in 200 kHz Sv
data, we created a method to connect diurnal and nocturnal Chl-a data,
allowing the retrieval of nocturnal Chl-a from information from remote
sensing Chl-a data.

Because the C3 component cannot be directly obtained using the PSC
algorithm, we identified a quadratic function that effectively models the
relationship between Chl-a and C3 (Fig. 12). This relationship, based on
nocturnal Chl-ag,; and Cs data, exhibited a strong correlation, with an R?
value of 0.9998. The coefficients for the hyperbolic models are pre-
sented in Table 2 and can be used to derive nocturnal Chl-a data from
Chl-amodis (Fig. 13).

3.3. Accuracy validation of nocturnal Chl-a

Nocturnal Chl-a data were validated against Chl-a;, sity, and valida-
tion was performed between Chl-ap,gis and Chl-aj, ity for comparison.
The results are shown in Fig. 14. The R? for the validation of nocturnal
Chl-a against Chl-aj, sjry was 0.6714, with a slope of 1.100 and an
intercept of 0.0439. The validation results for Chl-ap,gis showed an R?
value of 0.6625 with a slope of 1.135 and an intercept of 0.0141. The
systematic biases are presented in Table 3. The overall systematic bias
for the nocturnal Chl-a data may be better than that for Chl-apogjs.

Additionally, we discovered a strong correlation between diurnal
and nocturnal Chl-a, with an R? of 0.9988, a bias of 0.9925, and an MAE
of 1.0196, enabling the estimation of nocturnal Chl-a distribution based
on diurnal Chl-a (Fig. 15). Although this result requires more in situ data
for validation, it provides a concise way to obtain nocturnal Chl-a data.

4. Discussion

4.1. The latitudinal trend fishery echosounder Sv data in Northwest
Pacific Ocean

Previous studies have shown that the Sv of Fluid-like (FL) class,
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b) Hyperbola model of nighttime data
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Table 2
Coefficients of the hyperbolic models describing the relationship between C3 and
the diel difference in 200 kHz Sv data.

Coefficients a b
Chl-apeais Cs (daytime) 12.88 0.007250
Chl-ag,, C3 (nighttime) 12.74 0.006871

which includes copepods, euphausiids, and chaetognaths, typically in-
creases from low- to high-frequency acoustic backscatter from 18 to 200
kHz frequency band, and plankton show a rapid rise in the scattering
levels within the lower frequency range and a tendency toward levelling
off at higher frequencies (Nie et al., 2023; Stanton, 2000; Ventero et al.,
2020). These results are consistent with our findings. South of 26°N, the
suspended particles mainly consisted of smaller organisms that could be
detected at a higher frequency (333 kHz), and the 333 kHz band shows
considerably higher values than the 200 kHz, which is consistent with
the biogeographic provinces around 150°E (Zang et al., 2023). North of
26°N, the Sv data for the two frequency bands gradually increased and
converged. This can be attributed to two main factors. First, as latitude
increases, the abundance and size of planktonic organisms increase with
changes in the marine environment (Zang et al., 2023). Consequently,
the Sv data for both the frequency bands gradually increase. Second,
owing to the larger size of the suspended particles, the 200 kHz fre-
quency band detected higher Sv intensities from the same particles than
the 333 kHz frequency band. Hence, although the 333 kHz frequency
band can detect a greater number of suspended particles, the trend and
intensity difference of the Sv data between the two frequency bands
gradually converge (Stanton, 2000). This further demonstrates that
there is a certain variation pattern of Sv data with latitude, a connection
driven by latitudinal gradients in environmental controls (like

temperature, salinity) and nutrient regimes, which collectively alter
plankton community composition (McManus and Woodson, 2012;
Messié and Chavez, 2017; Zang et al., 2023). Although Xue et al. showed
no obvious correlation between Sv data and latitude—owing to the
different collection times of the acoustic data—Sv data are affected by
the DVM of zooplankton, and the latitude span is relatively small (Xue
et al., 2021). Therefore, we averaged the data over the daytime periods.
This approach can not only distinguish the day-night Sv data conditions
but also explore the relationship between Sv data and latitude.

Based on the above analysis, because of the characteristics of the 333
kHz frequency band, it cannot fully reflect the situation of suspended
particles at night. If we directly use the results of the day-night differ-
ence of 200 kHz data, it may lead to the omission of suspended particles
that exist in the surface layer both during the day and at night north of
26°N. Therefore, in our study, we selected the daytime data of 200 kHz
north of 26°N, and based on the enhancement in Sv data caused by the
DVM south of 26°N, we reprocessed the enhancement of the diurnal 200
kHz frequency band caused by the increase in latitude. However, the
changes caused by DVM and the variation in planktonic organisms with
latitude are not entirely consistent, with differences in the intensity and
species composition of plankton (Behrenfeld et al., 2019; Zang et al.,
2023). Seasonal variations in planktonic organisms may also contribute
to the uncertainties in the reprocessing process (Garcia-Herrera et al.,
2022; Wei et al., 2023; Zhou et al., 2015). Given the limitations of the Sv
data and the calibration process, we delimited the study range from
30°N to 50°N, and the relevant results of the Sv data reprocess may not
be applicable to other marine regions. Further seasonal studies and
validation are required. Simultaneously, different processing methods
can be applied to the Sv data to leverage the multi-frequency and
day-night detection advantages of the fishery echosounder, enabling
further analysis of the correlation between the Sv data and latitude or
the marine environment.

4.2. Potential relationships in model construction

This study investigated the relationship between suspended particles
and Chl-a in the water column by establishing a connection between the
diel variation of surface 200 kHz Sv data and different sizes of Chl-a
components. Although the 200 kHz frequency band of the fishery
echosounder does not directly detect phytoplankton, the Sv data con-
taining zooplankton information exhibits a stable correlation (repre-
sented by hyperbolic model) with the large phytoplankton represented
by the C3 component calculated using the PSC algorithm. The PSC al-
gorithm has been widely used and validated in previous studies for its
capacity to characterize biomass relationships between plankton groups
(Brewin et al., 2010; Huan et al., 2022). Therefore, we selected the
hyperbolic model based on its alignment with the general trends of the
PSC algorithm model and its superior statistical fitting performance.
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Table 3
The metrics of algorithms assessment.
Metrics Slope Intercept R? Bias MAE
Nocturnal Chl-a and Chl-aj, sity 1.100 0.0439 0.6714 0.9796 1.8162
Chl-amegis and Chl-aj, siry 1.135 0.0141 0.6625 1.2671 2.0059

This relationship may be associated with predator-prey dynamics
within the plankton (Zhou et al., 2015). Studies have shown that the
ratio of predator size to (ingested) prey size for distinct plankton grazer
groups ranges, on average, over 1 to 2 orders of magnitude (Fernandez-
Alamo and Farber-Lorda, 2006; Wirtz, 2012; Zhou et al., 2015). This
pattern may also encompass ecological flow within the plankton com-
munity and biological carbon pumps (Iversen, 2023; Legendre, 1999).

The nocturnal distribution of Chl-a can be derived from the diel differ-
ence in the 200 kHz acoustic data, which captures the nighttime patterns
of larger suspended particles. Although the 200 kHz Sv data inherently
include signals from vertically migrating fish and other plankton-
feeding organisms (whose grazing activities contribute to phyto-
plankton consumption) and despite current limitations in accurately
discriminating distinct biological signatures or eliminating their
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Fig. 15. The relationship between nocturnal Chl-a and diurnal Chl-a.

influences within acoustic data, the diel difference of 200 kHz Sv data,
reflecting the overall organic particle dynamics in the water column,
remains effective for reconstructing nocturnal Chl-a dynamics. Notably,
the hyperbolic model may not capture specific phenomena, such as
plankton anomalies from mesoscale eddies or algal blooms, because
increased suspended particle concentrations reduce Sv data sensitivity,
driving the model toward an extreme value (Fig. 10). This leads to model
deviation when the Chl-a concentration is high, particularly when the C3
component is dominant in the water. The same problems occur in the
PSC algorithm, which is also a reason for model deviations (Brewin
etal., 2010; Huan et al., 2022). Therefore, future research should further
explore relevant ecological patterns and clarify the relationship between
acoustic data and nocturnal Chl-a to develop a more accurate model.

In other words, this study establishes a methodological bridge be-
tween satellite-derived Chl-a and nocturnal Chl-a concentrations
through acoustic Sv data analysis. The developed empirical relation-
ships enable direct derivation of nocturnal Chl-a estimates from remote
sensing data within the study area. And the derived nocturnal Chl-a
products maintain spatiotemporal consistency with satellite observa-
tions, overcoming the inherent limitations of discrete field measure-
ments, including low spatial coverage and scale mismatch. For broader
applications, this framework provides a transferable methodology
requiring region-specific validation through nocturnal Chl-a and coor-
dinated acoustic sampling. Additionally, the stable relationship between
the C3 and 200 kHz frequency band data could extend the acoustic data
of single-point station or transect surveys into large-scale applications
by leveraging the characteristics of large-scale remote sensing surveys
using the hyperbolic model. However, the accuracy of the large-scale
acoustic data derived from the hyperbolic model still requires further
verification, including the distribution of planktonic particles in the
water column and their correlation with acoustic data; hence, we pro-
pose its feasibility.

4.3. The improvement of nocturnal Chl-a compared to Chl-amodis

As a polar-orbiting satellite, MODIS-Aqua passes over the study area
at approximately 13:30 local time. According to the diel variation of Chl-
a in the Northwest Pacific Ocean, during this time, the concentration
was relatively low, but gradually increased throughout the day (Pan
et al., 2019). Therefore, using Chl-apgis to represent the daily Chl-a
level in the Northwest Pacific region may result in an overall underes-
timation of Chl-a concentration. This phenomenon may not be pro-
nounced in low-latitude regions with low productivity; however,
significant deviations may exist in areas with abundant nutrients and
higher productivity, such as the Kuroshio-Oyashio Mixing Zone (Huang
et al., 2022).

As shown in Table 3, the R? and slope show a slight improvement,
and the systematic bias of the nocturnal Chl-a data is better than that of

10

Ecological Informatics 90 (2025) 103246

Chl-apegis- This is mainly because nocturnal Chl-a is obtained through
relationships with Sv data and is not affected by variations in daylight
intensity, which lead to deviations in Chl-apegiss Another factor
contributing to the lower systematic bias of the nocturnal Chl-a was the
manner in which the Sv-based algorithm accounted for the vertical
distribution of particles in the water column. In contrast, the Chl-anodis
algorithm cannot accurately capture this vertical variability, particu-
larly in complex oceanic environments with vigorous vertical mixing,
such as upwelling regions (Blondeau-Patissier et al., 2014). This led to
larger systematic errors in Chl-aygis. Although the model may induce
deviations (Discussion 4.2), nocturnal Chl-a data can reduce systematic
biases compared with remote sensing Chl-a. For the satellite Chl-a
product accuracy goal in the open ocean, an accuracy of approxi-
mately 35 % is generally considered acceptable for international mis-
sions (McClain, 2009). Therefore, compared to Chl-anegis, the nocturnal
Chl-a data can better reflect the distribution of phytoplankton in the
Northwest Pacific Ocean, which can be further used to explore whether
diel vertical migrations of zooplankton exhibit Chl-a concentration
preferences (Garcia-Herrera et al., 2022; Ge et al., 2021). Specifically,
since total Chl-a comprises size-fractionated phytoplankton compo-
nents, and vertically migrating zooplankton (large body size) exhibit
predatory preferences (Fernandez-Alamo and Farber-Lorda, 2006;
Wirtz, 2012; Zhou et al., 2015), regions with elevated nocturnal Chl-a
concentrations reflect stronger influences from DVM activities.
Compared to satellite-derived Chl-a (which typically represents surface-
layer or diurnally averaged concentrations), higher nighttime Chl-a
levels further reflect the dominance of larger phytoplankton (Cs
component) in water column and more pronounced diel migratory
tendencies of zooplankton.

4.4. Ecological and fishery management insights from nocturnal Chl-a

Pan et al. and our study demonstrate that Chl-a has a diel variation
with higher levels at night and lower levels during the day in the
Northwest Pacific Ocean (Pan et al., 2019). This observed Chl-a diel
variation not only reflects the adaptive regulation of phytoplankton to
light-dark cycles but also provides a physiological basis for under-
standing their diurnal oscillation mechanisms. Smaller yet numerous
nocturnal phytoplankton cells with high Chl-a contents are likely to be
adequately prepared for photosynthesis and population growth during
the day. Conversely, an increase in phytoplankton abundance during the
daytime, along with light regulation, leads to a decrease in Chl-a con-
tent. These further confirm the results of Li et al., which show phyto-
plankton biomass and carbon content are lower at night and higher
during the day, whereas cell abundance and size are smaller at night and
larger during the day (Li et al., 2022).The decrease in nocturnal
phytoplankton abundance and size was largely attributable to the up-
ward movement of nocturnal zooplankton and fish during grazing (Ge
etal., 2021). In contrast, the greater reduction in biomass and the higher
Chl-a content of phytoplankton during the night highlight the richness of
nutrients and biota in the corresponding marine region. In other words,
nocturnal Chl-a data compensate for the lack of data on the diel varia-
tion of Chl-a and can effectively reveal the phenomenon of diurnal-
nocturnal oscillations in planktonic organisms, thus deepening our un-
derstanding of marine primary productivity and biological carbon
cycling processes (Fogg, 1991; Legendre, 1999). By obtaining nocturnal
Chl-a data, we can further assess the impact of diel vertical migration
(DVM) on the increase in nocturnal zooplankton abundance in the upper
ocean layers and their predation effects on the cycling of surface-layer
materials (Fernandez-Alamo and Farber-Lorda, 2006). Additionally,
integrating nocturnal Chl-a data with other parameters, such as dis-
solved oxygen concentrations and nutrient levels, could provide a more
comprehensive understanding of ocean ecosystem dynamics (Messié
and Chavez, 2017).

In pelagic fisheries, a significant portion of commercial operations
rely on nocturnal light-attraction fishing techniques to aggregate target
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species for capture. Therefore, some studies have combined acoustic and
marine environmental remote-sensing data to explore fish habitats and
stock distributions (Sanchez-Gendriz and Padovese, 2017; Xue et al.,
2025; Zhu et al., 2024). Some studies have also combined ocean
nighttime light remote sensing data and AIS vessel position data to
monitor and manage ocean-going fishing vessels and further analysed
the location of fishing grounds by integrating relevant environmental
data (Tian et al., 2022). However, current marine environmental remote
sensing data used in research are obtained mainly during the day. In
contrast, nocturnal Chl-a data better reflect the distribution of nocturnal
plankton. Nocturnal Chl-a data can better reflect the distribution of fish
stocks and fishing operations for mid-surface economically important
fish species that use plankton as forage organisms. Additionally, un-
derstanding the relationship between nocturnal Chl-a and fish migratory
patterns can help predict the best time and location for fishing. Thus,
compared to daytime data, nocturnal Chl-a data can assist managers and
fishermen in more accurately identifying fishing grounds, enabling more
precise planning and guidance of fishery activities based on the habits
and life history characteristics of different economically important fish
species. Furthermore, nocturnal Chl-a monitoring enables a more ac-
curate delineation of fishery resource zones and ecological protection
areas, providing a data-driven foundation for enhancing marine
resource conservation and optimizing maritime supervision.

5. Conclusions

We aimed to determine the distribution of nocturnal Chl-a in the
Northwestern Pacific Ocean by establishing a relationship between
ocean color remote sensing data and Sv data collected using a multibeam
fishery echosounder. The results demonstrate that the diel difference in
200 kHz Sv data can effectively reflect the distribution of larger sus-
pended particles at night and correlates strongly with the C3 concen-
tration derived from the PSC algorithm. Based on the relationship
between C3 and Chl-a concentration, we successfully estimated the
nocturnal Chl-a distribution using diurnal Chl-a data obtained from
ocean color remote sensing. By analyzing the variations in diel Chl-a
concentration, we achieved a better assessment of diel changes in
phytoplankton and primary productivity in the ocean, providing insights
into the diel migration of planktonic organisms, marine carbon cycles,
and marine fisheries. However, the results obtained from this study
apply to the Northwest Pacific Ocean, given the specific data collection
and reprocessing process of the fishery echosounder Sv data. Further
exploration is required to investigate the ecological patterns of plankton
particles reflected in the acoustic data and Chl-a, to improve and vali-
date the models. Additionally, efforts should be made to investigate
seasonal and area differences.
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