张志伟 / ZHANG Zhiwei
目前已在NC、JPO、GRL、JGR、JC等学术期刊发表SCI论文70篇,其中第一或通讯作者SCI论文36篇,总被引2600余次,H指数为28(Google Scholar数据),2篇第一作者论文入选ESI高被引论文。
▪ 第一或通讯作者论文:
43. Feng Z., Zhang Z. W.*, Zhang J., Zhang W., Yuan M., Jing Z., Zhao W., and Tian J. (2025), Implementation and evaluation of a new parameterization of submesoscale vertical flux in a mesoscale-resolving model in the North Pacific, Ocean Modelling, https://doi.org/10.1016/j.ocemod.2025.102655.
42. Zhang Z. W.#*, Chang J.#, Zhang X., and Zhang W. (2025), Mixed transitional layer instability: A mechanism for deep-penetrating submesoscale processes in the subtropical upper ocean, Journal of Physical Oceanography, 55(12), 2269-2283, DOI: 10.1175/JPO-D-25-0009.1.
41. Zhang E.#, Miao M.#, and Zhang Z. W.* (2025), Exploring submesoscale processes and internal solitary waves using SWOT data in the South China Sea, Journal of Geophysical Research: Oceans, 130(9), e2025JC022700, DOI: 10.1029/2025JC022700.
40. Yuan Q., Zhang Z. W.*, Qiu B., and Zhao W. (2025), Spatiotemporal variations and parameterization scaling of submesoscale eddy diffusivity in the global ocean, Geophysical Research Letters, 52(15), e2025GL115299, DOI: 10.1029/2025GL115299.
39. Yuan Q., Zhang Z. W.*, Liu T., Zhao W., and Tian J. (2025), Stirring by mesoscale eddies dominates meridional eddy heat transport in global ocean, Science China Earth Sciences, 68(9), 2904–2912, DOI: 10.1007/s11430-024-1653-8.
38. Wang H., and Zhang Z. W.* (2025), Submesoscale processes triggered by tropical cyclones and their role in temperature recovery of cold wakes, Geophysical Research Letters, 52(12), e2025GL116241, DOI: 10.1029/2025GL116241.
37. Wei Y., Zhang Z. W.*, Zhang X.*, Sun Z., Zhao W., and Tian J. (2025), Kinematic characteristics and water mass transports of submesoscale coherent vortices in the northeastern South China Sea, Journal of Geophysical Research: Oceans, 130(1), e2024JC021118, DOI: 10.1029/2024JC021118.
36. Zhang Z. W., Miao M., Qiu B., Tian J., Jing Z., Chen G., Chen Z., and Zhao W. (2024), Submesoscale eddies detected by SWOT and moored observations in the northwestern Pacific, Geophysical Research Letters, 51(15), e2024GL110000, DOI: 10.1029/2024GL110000.
35. Zhang Z. W.* (2024), Submesoscale dynamic processes in the South China Sea, Ocean-Land-Atmosphere Research, 3, Article 0045, DOI: 10.34133/olar.0045.
34. Liu Y., Zhang Z. W.*, Yuan Q., and Zhao W. (2024), Decadal trends in the Southern Ocean meridional eddy heat transport, Journal of Climate, 37(14), 3775-3789, DOI: 10.1175/JCLI-D-23-0462.1.
33. Shang G., Zhang Z. W.*, Guan S., Huang X., Zhou C., Zhao W., and Tian J. (2024), Mesoscale eddies and near-inertial internal waves modulate seasonal variations of vertical shear variance in the northern South China Sea, Journal of Physical Oceanography, 54(7), 1449-1465, DOI: 10.1175/JPO-D-23-0070.1.
32. Tang T., Zhang Z. W.*, Zhang J., Zhang X., Sun Z., and Feng Z. (2024), Submesoscale processes in the Kuroshio Loop Current: Roles in energy cascade and salt and heat transports, Journal of Geophysical Research: Oceans, 129(7), e2023JC020226, DOI: 10.1029/2023JC020226.
31. Zheng K., Zhang Z. W.*, Yang Z., Sun H., Guan S., Huang X., Zhou C., Zhao W., and Tian J. (2024), Influence of Lee wave breaking on far-field mixing in the deep ocean, Journal of Geophysical Research: Oceans, 129(3), e2023JC020386, DOI: 10.1029/2023JC020386.
30. Miao M., Zhang Z. W.*, Zhang J., Wang Y., Zhao W., and Tian J. (2023), Steric heights of submesoscale processes and internal gravity waves in the subtropical northwestern Pacific and northern South China Sea as revealed by moored observations, Progress in Oceanography, 219, 103158, DOI: 10.1016/j.pocean.2023.103158.
29. Zheng K., Zhang Z. W.*, Zhao W., and Tian J. (2023), The impact of rough topography on behaviors of mesoscale eddies as revealed by submesoscale resolving simulations, Ocean Modelling, 186, 102279, DOI: 10.1016/j.ocemod.2023.102279.
28. Sun Z.#, Zhang Z. W.#, Li C., Yuan D., Yuan G., Lu W., Liu Y., Zhou C., Wang J., Yang Y., Zhao W., and Tian J. (2023), Mooring measurements of full-depth zonal currents along the 143°E meridian in the northwestern Pacific Ocean, Journal of Physical Oceanography, 53(10), 2491-2510, DOI: 10.1175/JPO-D-22-0210.1.
27. Sun Z.#, Zhang Z. W.#, Huang R. X., Gan J., Zhou C., Zhao W., and Tian J. (2023), Novel insights into the zonal flow and transport in the Luzon Strait based on long-Term mooring observations, Journal of Geophysical Research: Oceans, 128(3), e2022JC019017, DOI: 10.1029/2022JC019017.
26. Zhang J., Zhang Z. W.*, and Qiu B. (2023), Parameterizing submesoscale vertical buoyancy flux by simultaneously considering baroclinic instability and strain-Induced frontogenesis, Geophysical Research Letters, 50(8), e2022GL102292, DOI: 10.1029/2022GL102292.
25. Zhang Z. W.*, Liu Y., Qiu B., Luo Y., Cai W., Yuan Q., Liu Y., Zhang H., Liu H., Miao M., Zhang J., Zhao W.*, and Tian J.* (2023), Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport, Nature Communications, 14, 1335, DOI: 10.1038/s41467-023-36991-2.(ESI高被引论文)
24. Sun Z., Zhang Z. W.*, Qiu B., Zhou C., Zhao W., and Tian J. (2022), Subsurface mesoscale eddies observed in the northeastern South China Sea: Dynamic features and water mass transport, Journal of Physical Oceanography, 52(5), 841-855, DOI: 10.1175/JPO-D-21-0177.1.
23. Zhang X., Zhang Z. W.*, McWilliams J. C., Sun Z., Zhao W., and Tian J. (2022), Submesoscale coherent vortices observed in the northeastern South China Sea, Journal of Geophysical Research: Oceans, 127(2), e2021JC018117, DOI: 10.1029/2021JC018117.(JGR高被引论文)
22. Zhang Z. W.*, Zhang X., Qiu B., Zhao W., Zhou C., Huang X., and Tian J.* (2021), Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays, Journal of Physical Oceanography, 51(1), 187-206, DOI: 10.1175/JPO-D-20-0100.1.
21. Miao M., Zhang Z. W.*, Qiu B., Liu Z., Zhang X., Zhou C., Guan S., Huang X., Zhao W., and Tian J. (2021), On contributions of multiscale dynamic processes to the steric height in the northeastern South China Sea as revealed by moored observations, Geophysical Research Letters, 48(14), e2021GL093829, DOI: 10.1029/2021GL093829.
20. Zhang J., Zhang Z. W.*, Qiu B., Zhang X., Sasaki H., Zhao W., and Tian J. (2021), Seasonal modulation of submesoscale kinetic energy in the upper ocean of the northeastern South China Sea, Journal of Geophysical Research: Oceans, 126(11), e2021JC017695, DOI: 10.1029/2021JC017695.
19. Zhang Z. W.*, Zhang Y., Qiu B., Sasaki H., Sun Z., Zhang X., Zhao W., and Tian J. (2020), Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations, Journal of Geophysical Research: Oceans, 125(2), e2019JC015404, DOI: 10.1029/2019JC015404.
18. Sun Z., Zhang Z. W.*, Qiu B., Zhang X., Zhou C., Huang X., Zhao W., and Tian J. (2020), Three-dimensional structure and interannual variability of the Kuroshio Loop Current in the northeastern South China Sea, Journal of Physical Oceanography, 50(9), 2437-2455, DOI: 10.1175/JPO-D-20-0058.1.
17. Zhang Z. W., Liu Z., Richards K., Shang G., Zhao W., Tian J., Huang X., and Zhou C. (2019), Elevated diapycnal mixing by a subthermocline eddy in the western equatorial Pacific, Geophysical Research Letters, 46(5), 2628-2636, DOI: 10.1029/2018GL081512.
16. Zhang Z. W., Qiu B., Tian J., Zhao W., and Huang X. (2018), Latitude-dependent finescale turbulent shear generations in the Pacific tropical-extratropical upper ocean, Nature Communications, 9, 4086, DOI: 10.1038/s41467-018-06260-8.
15. Zhang Z. W.*, Zhao W., Qiu B., and Tian J.* (2017), Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea, Journal of Physical Oceanography, 47(6), 1243-1259, DOI: 10.1175/JPO-D-16-0185.1.
14. Li C.#, Zhang Z. W.#, Zhao W., and Tian J. (2017), A statistical study on the subthermocline submesoscale eddies in the northwestern Pacific Ocean based on Argo data, Journal of Geophysical Research: Oceans, 122(5), 3586-3598, DOI: 10.1002/2016JC012561.
13. Zhang Z. W., Tian J., Qiu B., Zhao W., Chang P., Wu D., and Wan X. (2016), Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea, Scientific Reports, 6, 24349, DOI: 10.1038/srep24349.(ESI高被引论文)
12. Zhang Z. W., Zhao W., Tian J., Yang Q., and Qu T. (2015), Spatial structure and temporal variability of the zonal flow in the Luzon Strait, Journal of Geophysical Research: Oceans, 120(2), 759-776, DOI: 10.1002/2014JC010308.
11. Zhang Z. W., Li P., Xu L., Li C., Zhao W., Tian J., and Qu T. (2015), Subthermocline eddies observed by rapid-sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014, Geophysical Research Letters, 42(15), 6438-6445, DOI: 10.1002/2015GL064601.
10. Zhang Z. W.*, Zhong Y., Tian J., Yang Q., and Zhao W. (2014), Estimation of eddy heat transport in the global ocean from Argo data, Acta Oceanologica Sinica, 33(1), 42-47, DOI: 10.1007/s13131-014-0421-x.
9. Zhang Z. W., Zhao W., Tian J., and Liang X. (2013), A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation, Journal of Geophysical Research: Oceans, 118(12), 6479-6494, DOI: 10.1002/2013JC008994.
8. Zhang Z. W., Li Y., and Tian J. (2013), A modified method to estimate eddy diffusivity in the North Pacific using altimeter eddy statistics, Journal of Oceanology and Limnology, 31(4), 925-933, DOI: 10.1007/s00343-013-2214-2.
7. 樊呈洋, 孙忠斌, 徐州庆, 谢湄洁, 商巩, 张志伟*. (2025), 气旋式中尺度涡诱发夏秋季黑潮入侵南海的特征研究, 海洋学报, 47(4), 14–27.
6.金宇涛, 缪明芳, 张志伟*. (2025), 基于深度学习的南海东北部亚中尺度过程识别与分析研究, 海洋与湖沼, 56(1), 77–89.
5. 蒋泽鸣, 商巩, 张志伟*, 赵玮. (2023), 南海东北部中尺度涡对海表叶绿素a浓度的影响规律研究, 海洋与湖沼, 54(4), 987–999.
4. 冯哲, 缪明芳, 孙忠斌, 张志伟*. (2023), 南海东北部地转运动与近惯性运动间动能交换的时空变化特征研究, 中国海洋大学学报(自然科学版), 53(5), 21–31.
3. 张雨辰, 张新城, 张金超, 孙忠斌, 张志伟*. (2020), 南海亚中尺度过程的时空特征与垂向热量输运研究, 中国海洋大学学报(自然科学版), 50(12), 1–11.
2. 商巩, 张金超, 张志伟*. (2020), 南海北部上层细尺度流速剪切的时间变化规律研究, 中国海洋大学学报(自然科学版), 50(11), 12–21.
1. 张志伟, 曹安州, 荣增瑞, 刘玉光. (2012), 台湾海峡及周边海域水色光谱特性分析, 海洋通报, 31(1), 80–87.
▪ 合作作者论文:
36. Zhang Z., An B., Zhang Z. W., Guo Y., Zhang J., Feng Z., and Yu Y., (2026). Local effect of a submesoscale parameterization scheme and its remote influences on large-scale circulation in the Northwest Pacific, Ocean Modelling, 199, 102650, DOI: 10.1016/j.ocemod.2025.102650.
35. Zhang X., Liu L., Fei J., Li Z., Wei Z., Zhang Z. W., Jiang X., Dong Z., and Xu F., (2025). Advances in surface water and ocean topography for fine-scale eddy identification from altimeter sea surface height merging maps in the South China Sea, Ocean Science, 21, 1033-1045, DOI: 10.5194/os-21-1033-2025.
34. Wang H., Chen Z., Zhang Z. W., Peng S., Chen Z., Zhang S., and Cai S., (2025). Parameterization of near‐inertial waves induced mixing under the influence of mesoscale eddies, Journal of Geophysical Research: Oceans, 130(8), e2025JC022513, DOI: 10.1029/2025JC022513.
33. Chang Z., Huang X., Zhao W., Zhang Z. W., Guan L., Zhou C., and Tian J., (2025), Observational case study revealing oceanic internal solitary waves modulating air-sea interactions in northern South China Sea, Scientific Reports, 15, 25282, DOI: 10.1038/s41598-025-10059-1.
32. Wang H., Zhang Z. W., Sun Z., and Zhao W. (2025), Interannual to decadal variations in different Kuroshio intrusion paths in the Luzon Strait based on long-term reanalysis data, Journal of Geophysical Research: Oceans, 130(5), e2024JC022155, DOI: 10.1029/2024JC022155.
31. Zhao W., Zhou C., Zhang Z. W., Huang X., Guan S., Yang Q., Sun Z., Qin C., Guan Y., and Tian J., (2025), The South China Sea Mooring Array and its applications in exploring oceanic multiscale dynamics, Science Bulletin, 70(5), 609-623, DOI: 10.1016/j.scib.2024.12.008.
30. Chen R., Luo Y., Zhang Z. W., and Liu F. (2024), On the significance of ageostrophic meridional eddy-induced heat flux in the surface ocean of the Antarctic Circumpolar Current, Journal of Physical Oceanography, 54(9), 1857-1869, DOI: 10.1175/JPO-D-24-0002.1.
29. Wang Y., Guan S., Zhang Z. W., Zhou C., Xu X., Guo C., Zhao W., and Tian J. (2024), Observations of parametric subharmonic instability of diurnal internal tides in the northwest Pacific, Journal of Physical Oceanography, 54(3), 849-870, DOI: 10.1175/JPO-D-23-0055.1.
28. Zhu R., Yang H., Chen Z., Jing Z., Zhang Z. W., Sun B., and Wu L. (2024), Topography-generated submesoscale coherent vortices in the Kuroshio–Oyashio Extension region from high-resolution simulations, Journal of Physical Oceanography, 54(1), 237-252, DOI: 10.1175/JPO-D-23-0072.1.
27. Guan S., Jin F.-F., Tian J., Lin I-I, Pun I.-F., Zhao W., Huthnance J., Xu Z., Cai W., Jing Z., Zhou L., Liu P., Zhang Y., Zhang Z. W., Zhou C., Yang Q., Huang X., Hou Y., and Song J. (2024), Ocean internal tides suppress tropical cyclones in the South China Sea, Nature Communications, 15, 3903, DOI: 10.1038/s41467-024-48003-y.
26. Yang Y., Huang X., Zhao W., Zhou C., Zhang Z. W., Guan S., and Tian J. (2023), Kelvin waves from the equatorial Indian Ocean modulate the nonlinear internal waves in the Andaman Sea, Environmental Research Letters, 18(9), 094037, DOI: 10.1088/1748-9326/acf05d.
25. Li J., Zhang S., Liu Q., Yu X., and Zhang Z. W. (2023), Design and evaluation of an efficient high-precision ocean surface wave model with a multiscale grid system (MSG_Wav1.0), Geoscientific Model Development, 16(21), 6393–6412, DOI: 10.5194/gmd-16-6393-2023.
24. Zhou C., Xiao X., Zhao W., Yang J., Huang X., Guan S., Zhang Z. W., and Tian J. (2023), Increasing deep-water overflow from the Pacific into the South China Sea revealed by mooring observations, Nature Communications, 14, 2013, DOI: 10.1038/s41467-023-37767-4.
23. Yang Y., Huang X., Zhou C., Zhang Z. W., Zhao W., and Tian J. (2022), Three-dimensional structures of internal solitary waves in the northern South China Sea revealed by mooring array observations, Progress in Oceanography, 209, 102907, DOI: 10.1016/j.pocean.2022.102907.
22. Liu Y., Zhang X., Sun Z., Zhang Z. W., Sasaki H., Zhao W., and Tian J. (2022), Region-dependent eddy kinetic energy budget in the northeastern South China Sea revealed by submesoscale-permitting simulations, Journal of Marine Systems, 235, 103797, DOI: 10.1016/j.jmarsys.2022.103797.
21. Zhou C., Xu H., Xiao X., Zhao W., Yang J., Yang Q., Jiang H., Xie Q., Long T., Wang T., Huang X., Zhang Z. W., Guan S., and Tian J. (2022), Intense abyssal flow through the Yap-Mariana Junction in the western North Pacific, Geophysical Research Letters, 49(3), e2021GL096530, DOI: 10.1029/2021GL096530.
20. Huang X., Huang S., Zhao W., Zhang Z. W., Zhou C., and Tian J. (2022), Temporal variability of internal solitary waves in the northern South China Sea revealed by long-term mooring observations, Progress in Oceanography, 201, 102716, DOI: 10.1016/j.pocean.2021.102716.
19. Ye R., Shang X., Zhao W., Zhou C., Yang Q., Tian Z., Qi Y., Liang C., Huang X., Zhang Z. W., Guan S., and Tian J. (2022), Circulation driven by multihump turbulent mixing over a seamount in the South China Sea, Frontiers in Marine Science, 8, 794156, DOI: 10.3389/fmars.2021.794156.
18. Zhu R., Chen Z., Zhang Z. W., Yang H., and Wu L. (2021), Subthermocline eddies in the Kuroshio Extension region observed by mooring arrays, Journal of Physical Oceanography, 51(2), 439-455, DOI: 10.1175/JPO-D-20-0047.1.
17. Yang Y., Huang X., Zhao W., Zhou C., Huang S., Zhang Z. W., and Tian J. (2021), Internal solitary waves in the Andaman Sea revealed by long-term mooring observations, Journal of Physical Oceanography, 51(12), 3609–3627, DOI: 10.1175/JPO-D-20-0310.1.
16. Hu Q., Huang X., Zhang Z. W., Zhang X., Xu X., Sun H., Zhou C., Zhao W., and Tian J. (2020), Cascade of internal wave energy catalyzed by eddy-topography interactions in the deep South China Sea, Geophysical Research Letters, 47(4), e2019GL086510, DOI: 10.1029/2019GL086510.
15. Jiang Y., Zhang S., Tian J., Zhang Z. W., Gan J., and Wu C.-R. (2020), An examination of circulation characteristics in the Luzon Strait and the South China Sea using high-resolution regional atmosphere-ocean coupled models, Journal of Geophysical Research: Oceans, 125(6), e2020JC016253, DOI: 10.1029/2020JC016253.
14. Wang Z., Huang X., Yang Y., Zhang Z. W., Zhou C., Zhao W., and Tian J. (2020), Impacts of subtidal motions and the earth rotation on modal characteristics of the semidiurnal internal tide, Journal of Oceanography, 76, 15-27, DOI: 10.1007/s10872-019-00524-7.
13. Ye R., Zhou C., Zhao W., Tian J., Yang Q., Huang X., Zhang Z. W., and Zhao X. (2019), Variability in the deep overflow through the Heng-Chun Ridge of the Luzon Strait, Journal of Physical Oceanography, 49(3), 811–825, DOI: 10.1175/JPO-D-18-0113.1.
12. Wang D., Wang Q., Cai S., Shang X., Peng S., Shu Y., Xiao J., Xie X., Zhang Z. W., Liu Z., Lan J., Chen D., Xue H., Wang G., Gan J., Xie X., Zhang R., Chen H. and Yang Q. (2019), Advances in research of the mid-deep South China Sea circulation, Science China Earth Sciences, 62, 12, 1992-2004, 10.1007/s11430-019-9546-3.
11. Zhang X., Huang X., Zhang Z. W., Zhou C., Tian J., and Zhao W. (2018), Polarity variations of internal solitary waves over the continental shelf of the northern South China Sea: impacts of seasonal stratification, mesoscale eddies, and internal tides, Journal of Physical Oceanography, 48(6), 1349-1365, DOI: 10.1175/JPO-D-17-0069.1.
10. Huang X., Wang Z., Zhang Z. W., Yang Y., Zhou C., Yang Q., Zhao W., and Tian J. (2018), Role of mesoscale eddies in modulating the semidiurnal internal tide: Observation results in the northern South China Sea, Journal of Physical Oceanography, 48(8), 1749-1770, DOI: 10.1175/JPO-D-17-0209.1.
9. Zhou C., Zhao W., Tian J., Yang Q., Huang X., Zhang Z. W., and Qu T. (2018), Observations of deep current at the western boundary of the northern Philippine Basin, Scientific Reports, 8, 14334, DOI: 10.1038/s41598-018-32541-9.
8. Huang X., Zhang Z. W., Zhang X., Qian H., Zhao W., and Tian J. (2017), Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations, Journal of Physical Oceanography, 47(7), 1539-1554, DOI: 10.1175/JPO-D-16-0111.1.
7. Zhong Y., Bracco A., Tian J., Dong J., Zhao W., and Zhang Z. W. (2017), Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea, Scientific Reports, 7, 44011, DOI: 10.1038/srep44011.
6. Liu H., Zhang C. L., Yang C., Chen S., Cao Z., Zhang Z. W., and Tian J. (2017), Marine group II dominates planktonic archaea in water column of the northeastern South China Sea, Frontiers in Microbiology, 8, 1098, DOI: 10.3389/fmicb.2017.01098.
5. Sun Z., Zhang Z. W., Zhao W., and Tian J. (2016), Interannual modulation of eddy kinetic energy in the northeastern South China Sea as revealed by an eddy-resolving OGCM, Journal of Geophysical Research: Oceans, 121(5), 3190-3201, DOI:10.1002/2015JC011497.
4. Huang X., Chen Z., Zhao W., Zhang Z. W., Zhou C., Yang Q., and Tian J. (2016), An extreme internal solitary wave event observed in the northern South China Sea, Scientific Reports, 6, 30041, DOI: 10.1038/srep30041.
3. Li C., Zhang Z. W., Zhao W., and Tian J. (2015), Temporal variability of the current in the northeastern South China Sea revealed by 2.5-year-long moored observations, Journal of Oceanography, 71, 361-372, DOI: 10.1007/s10872-015-0295-3.
2. 刘玉民, 张志伟, 张新城, 孙忠斌, 商巩, 赵玮. (2023), 基于卫星高度计资料的黑潮入侵南海流径的时间变化规律研究, 海洋与湖沼, 54(4), 951–962.
1. 冀承振, 叶瑞杰, 董济海, 张志伟, 田纪伟. (2017), 南海中尺度涡边缘亚中尺度过程模式研究, 中国海洋大学学报(自然科学版), 47(1), 1–6.
▪ 发明专利/软件著作权:
1. 张志伟,唐天,张金超,一种基于卫星遥感资料计算亚中尺度垂向热通量的方法,国家发明专利,ZL202411944635.7,2025.05.30
2. 张志伟,张金超,冯哲,涡分辨率海洋模式亚中尺度垂向浮力通量的参数化方法,国家发明专利,ZL202410748485.6,2024.09.03
3. ROMS模式中的亚中尺度垂向浮力通量参数化方案软件V1.0,国家计算机软件著作权,2024SR0801774,2024.06.13
Research Gate:
https://www.researchgate.net/profile/Zhiwei-Zhang-2
Google Scholar:
https://scholar.google.com/citations?user=65XHOr4AAAAJ&hl=zh-CN
山东省青岛市崂山区松岭路238号中国海洋大学物理海洋教育部重点实验室 邮编:266100
Email: zzw330@ouc.edu.cn; 网站:https://www.researchgate.net/profile/Zhiwei-Zhang-2
