Intercomparison of the Extended Reconstructed Sea Surface Temperature v4 and v3b Datasets
Title:Intercomparison of the Extended Reconstructed Sea Surface Temperature v4 and v3b Datasets
Journal: Jouenal of Ocean University of China, 17:209-218
Authors:WANG J. -P. and X. -Y. Chen*
Abstract: Version 4 (v4) of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset is compared with its precedent, the widely used version 3b (v3b). The essential upgrades applied to v4 lead to remarkable differences in the characteristics of the sea surface temperature (SST) anomaly (SSTa) in both the temporal and spatial domains. First, the largest discrepancy of the global mean SSTa values around the 1940s is due to ship-observation corrections made to reconcile observations from buckets and engine intake thermometers. Second, differences in global and regional mean SSTa values between v4 and v3b exhibit a downward trend (around −0.032°C per decade) before the 1940s, an upward trend (around 0.014°C per decade) during the period of 1950–2015, interdecadal oscillation with one peak around the 1980s, and two troughs during the 1960s and 2000s, respectively. This does not derive from treatments of the polar or the other data-void regions, since the difference of the SSTa does not share the common features. Third, the spatial pattern of the ENSO-related variability of v4 exhibits a wider but weaker cold tongue in the tropical region of the Pacific Ocean compared with that of v3b, which could be attributed to differences in gap-filling assumptions since the latter features satellite observations whereas the former features in situ ones. This intercomparison confirms that the structural uncertainty arising from underlying assumptions on the treatment of diverse SST observations even in the same SST product family is the main source of significant SST differences in the temporal domain. Why this uncertainty introduces artificial decadal oscillations remains unknown.